Practical Post-Quantum Public-Key Encryptions

2017.03.24

Yongsoo Song

Contents

- Motivation
- The Learning with errors (LWE) Problem
- LWE-based Encryptions; Previous Works
- Our Scheme
- LWR
- Result and Conclusion

Motivation

Contemporary Cryptography

Need Larger Keys
Need Longer Outputs
< Quantum Computing Era >

Post-Quantum Cryptography

- NSA is transitioning to post-quantum crypto in the "not too distant" future; http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
- NIST launched Post-Quantum Crypto Project on Aug. 2, 2016; http://csrc.nist.gov/groups/ST/post-quantum-crypto
> To standardize Post-Quantum public-key crypto : Encryption / Signature / Key Exchange
> Timeline

Fall 2016	Formal Call for Proposals
Nov 2017	Deadline for Submissions

Post-Quantum Crypto

- Lattice-based crypto gains
increasing attentions;
$>$ Security based on the NP-hard worst-case lattice problems
> Fast implementation
> Versatility in many applications: HE, IBE, ...
- We focus on LWE-based Encryption

Learning with Errors (LWE) Problem

Solving a linear equation system

- Q.

1	3	7
4	5	7
6	6	9
2	7	3
3	8	7
5	4	2
1	0	5
4	5	3

$(\bmod 10)$

Find

; Easy!
(We can solve it by using Gaussian elimination)

Learning with Errors Problem (LWE)

1	3	7	x_{1}
4	5	7	x_{2}
6	6	9	x_{3}
2	7	3	
3	8	7	
5	4	2	
1	0	5	
4	5	3	
$\bigcap_{\mathbb{Z}_{10}^{8 \times 3}}$			

Decision-LWE Problem

- Q. Distinguish

1	3	7
4	5	7
6	6	9
2	7	3
3	8	7
5	4	2
1	0	5
4	5	3

7
1
1
0
6
0
2
5

from a uniform random sample in $\mathbb{Z}_{10}^{8 \times 4}$!
; Hard!

LWE-based Encryptions

LWE + LHL [Reg05]

2 LWE-based Enc

KeyGen
n

- Require a large m to randomize LWE samples in Encryption
> Leftover Hash Lemma
>Can We Reduce m?

LWE + LWE [LP11]

2 LWE-based Enc

KeyGen
 $\operatorname{Enc}(\mathrm{M})$

- Pros: smaller m by replacing LHL with LWE
- Cons: Discrete Gaussian samplings

LWE + LWR [CKLS16]

$$
\mathbf{d}=E n c *(M)
$$

, if $p=$

LWE + LWR [CKLS16]

Our Scheme

KeyGen

sk:

Setup Choose moduli q, p. Integers m, n .Sampled from a small distribution,
e.g. Binary (with small Hamming weight), Gaussian

LWE + LWR [CKLS16]

3 Our Scheme

4

Sampled from a small distribution, e.g. Binary (with small Hamming weight), Gaussian

LWE + LWR [CKLS16]

Learning with Rounding (LWR) Problem

- Surprisingly, it is secure under LWR assumption
- LWR: Distinguish any m pairs of type

Discard the least significant bits of <a, a > instead of adding small errors

- Have reduction from LWE: q is large or m is small

The Hardness of LWR Problem

(q : LWR modulus, p : rounding modulus, n : LWR dimension.)

- Before 2016, security reduction only when the modulus is somewhat large.
$>$ Banergee, Peikert, Rosen [BPR12] introduced LWR, and showed $\angle W R \geq \angle W E$ when q is sufficiently large. $\left(q \geq p \cdot B \cdot n^{\omega(1)}, \quad B\right.$: LWE noise support bound)
$>$ Alwen et al. [AKPW13] showed $\angle W R \geq \angle W E$ when the modulus and modulus-to-error ratio are super-poly.
- Bogdanov et al. [BGM+16] in TCC 2016 showed LWR \geq LWE when the number of samples is no larger than $O(q / B p)$. (B: LWE noise support bound)
- Cryptanalytic hardness against best known lattice attacks: LWR = LWE when the variance of LWE noise is $12 q^{2} / p^{2}$. (size of noise vectors are the same)

Caution! - How many LSBs can be discarded?

- (Correctness) If we cut a large proportion;
- (Security) We can not remove noise addition \mathscr{O}° if we cut very small;
\rightarrow Since the number of samples of LWR in the Enc procedure is restricted to be small, we can choose a proper rounding modulus "p" to satisfy both security and correctness.
<Bogdanov et al.> If the \# of samples(m) is no larger than $O(q / B p)$, we cannot distinguish either one from uniform;

Advantage of LWR assumption

LP11.Enc(M)

Lizard.Enc(M)

Set the parameter $\sigma^{2}=q^{2} / 12 p^{2}$: Preserve cryptanalytic hardness $\operatorname{LWE}(m, q, \sigma)=$ $\operatorname{LWR}(m, q, p)$ and functionality (encryption noise)

- Smaller CTXT
- No Gaussian sampling in Encryption

Performance of IND-CPA scheme

- Enc/Dec speeds; encrypting 256 bits with 128 -bit post-quantum security

Scheme	Enc		Dec	
RSA-3072	0.035	$(116,894)$	2.673	$(8,776,864)$
NTRU EES593EP1	0.024	$(80,558)$	0.025	$(82,078)$
Our Scheme	0.024	$(80,558)$	0.020	$(62,813)$

[Table] Performance of our Enc/Dec procedures in miliseconds (nb of cycles)
> Our scheme: measured on a PC with Intel dual-core i5 running at 2.6 GHz w/o parallelization.
$>$ RSA, NTRU: measured on a PC with Intel quad-core i5-6600 running at 3.3 GHz processor, drawn from ECRYPT Benchmarking of Crypto Systems.
> RSA does not achieve post-quantum security.

Security

- Asymptotic hardness;
- LWE with small secrets (e.g. Discrete Gaussian, Binary, Sparse binary)
- Thanks to reduction from LWE to LWR
- Concrete hardness;
- Follow the framework of Frodo / NewHope in parameter selection
- Extension to LWR problem (OLA)
- Current Combinatorial Attack on Sparse Secret LWE [Alb17]
- Quantum Security;
- IND-CCA in Quantum ROM using modified FO conversion [TU16] \rightarrow Optimal?

Questions?

Any comments, Implementation tips, applications, and even attacks would be appreciated!

PQ Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song, ePrint 2016 / 1126

