Practical Post-Quantum Public-Key Encryptions

2017.03.24

Yongsoo Song

Contents

- Motivation
- The Learning with errors (LWE) Problem
- LWE-based Encryptions; Previous Works
- Our Scheme
- LWR
- Result and Conclusion

Motivation

Contemporary Cryptography

Motivation

2

 NSA is transitioning to post-quantum crypto in the "not too distant" future; <u>http://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm</u>

 NIST launched Post-Quantum Crypto Project on Aug. 2, 2016; <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto</u>

Fall 2016	Formal Call for Proposals
Nov 2017	Deadline for Submissions

5

2

3

Motivation

Motivation

2

3

5

Post-Quantum Crypto

• Lattice-based crypto gains

increasing attentions;

➢ Security based on the NP-hard

worst-case lattice problems

- ➢ Fast implementation
- ➤ Versatility in many applications: HE, IBE, ...
- We focus on LWE-based Encryption

Learning with Errors (LWE) Problem

Solving a linear equation system

• Q.

LWE Problem

1

2

3

5

1	3	7	x ₁	=	7	(mod 10)		Find
4	5	7	x ₂		9			
6	6	9	x ₃		2			
2	7	3		-	9		-	
3	8	7			6		; t	:asy!
5	4	2			8		Ga	iussian
1	0	5			2			
4	5	3			7			
	-							

sy!

an solve it by using sian elimination)

X₁

X₂

X₃

ļ

Learning with Errors Problem (LWE)

• Q.

3

5

1

2

LWE Problem

Decision-LWE Problem

• Q. Distinguish

1	3	7	
4	5	7	
6	6	9	
2	7	3	
3	8	7	/
5	4	2	
1	0	5	
4	5	3	

from a uniform random sample in $\mathbb{Z}_{10}^{8\times 4}$!

; Hard!

LWE Problem

LWE-based Encryptions

LWE + LHL [Reg05]

- Require a large m to randomize LWE samples in Encryption
 - Leftover Hash Lemma
- ≻Can We Reduce m?

LWE + LWE [LP11]

- Pros: smaller m by replacing LHL with LWE
- Cons: Discrete Gaussian samplings

Setup Choose moduli q, p. Integers m, n.

Sampled from a small distribution, e.g. Binary (with small Hamming weight), Gaussian

Uniformly sampled from $Z_q^{m \times n}$

е

Sampled from Gaussian distribution

 $d = (a', b') \implies b' \approx \langle a', s \rangle + M(q/2) \pmod{q}$

 $c = (a, b) \Rightarrow b \approx \langle a', s \rangle + M(p/2) \pmod{p}$

Learning with Rounding (LWR) Problem

- Surprisingly, it is secure under LWR assumption
- LWR: Distinguish any m pairs of type

$$\left(\begin{array}{c} a_{i} \\ a_{i} \\ \end{array}, \begin{array}{c} b_{i} \\ b_{i} \\ \end{array}\right) = \left[\begin{array}{c} p \\ q \\ \end{array}, \begin{array}{c} a_{i} \\ a_{i} \\ \end{array}\right] \in Z_{q}^{n} \times Z_{p} \text{ from uniform}$$

Discard the least significant bits of <a_i,s> instead of adding small errors

• Have reduction from LWE: q is large or m is small

2

3

The Hardness of LWR Problem

(q: LWR modulus, p: rounding modulus, n: LWR dimension.)

• Before 2016, security reduction only when the modulus is somewhat large.

2

3

5

- > Banergee, Peikert, Rosen [BPR12] introduced LWR, and showed LWR \geq LWE when q is sufficiently large. ($q \geq p \cdot B \cdot n^{\omega(1)}$, B: LWE noise support bound)
 - Alwen et al. [AKPW13] showed LWR ≥ LWE when the modulus and modulus-to-error ratio are super-poly.
- Bogdanov et al. [BGM+16] in TCC 2016 showed LWR \geq LWE when the number of samples is no larger than O(q/Bp). (B: LWE noise support bound)
- Cryptanalytic hardness against best known lattice attacks: LWR = LWE when the variance of LWE noise is $12q^2/p^2$. (size of noise vectors are the same)

 \rightarrow Since **the number of samples of LWR** in the Enc procedure is restricted to be **small**, we can choose a proper rounding modulus "p" to satisfy both security and correctness. \bigcirc

Advantage of LWR assumption

Set the parameter $\sigma^2 = q^2/12p^2$: *Preserve cryptanalytic hardness* LWE(m,q, σ) = LWR(m,q,p) and functionality (encryption noise)

- Smaller CTXT
- No Gaussian sampling in Encryption

Performance of IND-CPA scheme

• Enc/Dec speeds; encrypting 256 bits with 128-bit post-quantum security

Scheme	Enc	Dec
RSA-3072	0.035 (116,894)	2.673 (8,776,864)
NTRU EES593EP1	0.024 (80,558)	0.025 (82,078)
Our Scheme	0.024 (80,558)	0.020 (62,813)

[Table] Performance of our Enc/Dec procedures in miliseconds (nb of cycles)

- > Our scheme: measured on a PC with Intel dual-core i5 running at 2.6 GHz w/o parallelization.
- RSA, NTRU: measured on a PC with Intel quad-core i5-6600 running at 3.3 GHz processor, drawn from ECRYPT Benchmarking of Crypto Systems.
- > RSA does not achieve post-quantum security.

3

2

5 Result

Asymptotic hardness;

2

3

5

Result

- LWE with small secrets (e.g. Discrete Gaussian, Binary, Sparse binary)
- Thanks to reduction from LWE to LWR
- Concrete hardness;
 - Follow the framework of Frodo / NewHope in parameter selection
 - Extension to LWR problem (OLA)
 - Current Combinatorial Attack on Sparse Secret LWE [Alb17]
- Quantum Security;
 - IND-CCA in Quantum ROM using modified FO conversion [TU16] → Optimal?

Questions?

Any comments, Implementation tips, applications, and even attacks would be appreciated!

PQ Lizard: Cut off the Tail! Practical Post-Quantum Public-Key Encryption from LWE and LWR Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song, ePrint 2016 / 1126

3

5

