Introduction to CKKS

(a.k.a. Approximate Homomorphic Encryption)

Yongsoo Song Private Al Bootcamp Microsoft Research, Dec 02

What is CKKS?

...

Plain Computation

Encrypted Computation

bool, int (uint64), modulo p
bool, int (uint64), modulo p
BGV, BFV, TFHE
CKKS

[Cheon-Kim-Kim-Song, Asiacrypt'17] Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN)

[Cheon-Han-Kim-Kim-Song, Eurocrypt'18] Bootstrapping for Approximate Homomorphic Encryption [Cheon-Han-Kim-Kim-Song, SAC'18] A Full RNS Variant of Approximate Homomorphic Encryption [Chen-Chillotti-Song, Eurocrypt'19] Improved Bootstrapping for Approximate Homomorphic Encryption

> SEAL/native/examples/4_ckks_basic.cpp Compute $F(x) = \pi * x^3 + 0.4 * x + 1$ for $x = x_1, x_2, ...$

Approximate Arithmetic

- Floating-point Arithmetic (double, IEEE 754)
 - The significand is assumed to have a binary point to the right of the leftmost bit $(101011 * 2^{-5}) * (110111 * 2^{-5}) = 100100111101 * 2^{-10} \approx 100101 * 2^{-4}$
- Fixed-point Arithmetic : more suitable for HE
 - The scaling factor is the same for all values of the same type, and does not change during the entire computation

$$(101011 * 2^{-5}) * (110111 * 2^{-5}) = 100100111101 * 2^{-10} \approx 1001010 * 2^{-5}$$

Algorithms in CKKS

Encoding & Decoding

Encoding of a vector

 $F(x) = \pi * x^3 + 0.4 * x + 1$

102	<pre>vector<double> input;</double></pre>	
103	<pre>input.reserve(slot_count);</pre>	slot_count = $n/2$
104	<pre>double curr_point = 0;</pre>	
105	<pre>double step_size = 1.0 / (static_cast<double>(slot_count) - 1);</double></pre>	
106	<pre>for (size_t i = 0; i < slot_count; i++, curr_point += step_size)</pre>	input = $(x_1,, x_{n/2})$
107	{	
108	<pre>input.push_back(curr_point);</pre>	
109	}	
		$\Delta \cdot x_1$
124	Plaintext x_plain;	
125	<pre>print_line(LINE);</pre>	x plain \approx $\Delta \cdot x_2$
126	cout << "Encode input vectors." << endl;	
127	<pre>encoder.encode(input, scale, x_plain);</pre>	$\Delta \cdot x_{n/2}$

Encoding of a scalar

 $F(x) = \pi * x^3 + 0.4 * x + 1$

Encrypt & Decrypt

- Encrypt: $m(X) \mapsto ct = (c_0(X), c_1(X)) \in R_Q^2$ such that $c_0 + c_1 s \approx m \pmod{Q}$
 - Correctness: ||m|| < Q.
 - Notation: $ct(S) = c_0 + c_1 S \in R_Q[S]$
- Warning: An encryption of m is not decrypted to exactly m but m + e for some error e

such that |e| < bound

Encrypt & Decrypt

- 128 Ciphertext x1_encrypted;
- 129 encryptor.encrypt(x_plain, x1_encrypted);

Plain – Cipher mult

 $m \in R$

$$ct = (c_0, c_1) \in R_Q^2$$

$$ct' = (c_0', c_1') \in R_Q^2$$

166 evaluator.multiply_plain(x1_encrypted, plain_coeff3, x1_encrypted_coeff3);

Cipher – Cipher mult & Relinearization

- $ct(S) = c_0 + c_1 S \in R_Q[S]$
- $ct_{mul} = ct * ct' = d_0 + d_1S + d_2S^2$
- relinearize: $ct_{mul} \mapsto ct'_{mul} = d'_0 + d'_1S$
 - change the format of ciphertext while (almost) preserving encrypted plaintext
 - (almost always) performed after cipher-cipher multiplication

Cipher – Cipher mult & Relinearization

 $\Delta^2 \cdot x_{n/2} y_{n/2}$

- 138 evaluator.square(x1_encrypted, x3_encrypted);
- 139 evaluator.relinearize_inplace(x3_encrypted, relin_keys);

Rescale

- Usually performed after multiplication
- Rescale $ct \in R_Q^2 \mapsto ct' \in R_{Q'}^2$ for Q' < Q
 - Ciphertext & plaintext are (approximately) divided by Δ
 - Input & output are encryptions of the same message with different representations
 - Scaling factor $\Delta^2 \mapsto \Delta$, ctx modulus $Q \mapsto Q' = Q/\Delta$

151 evaluator.rescale_to_next_inplace(x3_encrypted);

- $\log (Q/\Delta)$ bits
- evaluator.rescale_to_next_inplace(x1_encrypted_coeff3); 169

Add/Mult between ctxs with different moduli

((xy)z)w vs (xy)(zw)

Ciphertext modulus : $Q \mapsto Q' = Q/\Delta \mapsto Q'' = Q/\Delta^2 \mapsto Q''' = Q/\Delta^3$

((xy)z)w vs (xy)(zw)

Ciphertext modulus : $Q \mapsto Q' = Q/\Delta \mapsto Q'' = q/\Delta^2$

Ciphertext level

- $Q = q_0 \cdot \Delta^L$
 - q_0 : base modulus (which is usually set to be >> Δ)
 - $Q_\ell = q_0 \cdot \Delta^\ell$
 - "Ciphertext level is ℓ " = "Ciphertext modulus is Q_{ℓ} "
- Level = Computational capability
 - Ciphertext level decreases as the computation progresses
 - No more (multiplicative) arithmetic is allowed for 0-level ciphertexts but decryption
- <Multiplication> $(ct, \ell, \Delta), (ct', \ell, \Delta) \mapsto (ct_{mul}, \ell, \Delta^2)$ product of plaintexts & scaling factors
- <Relinearization> $(ct_{mul}, \ell, \Delta^2) \mapsto (ct'_{mul}, \ell, \Delta^2)$
- <Rescale> $(ct'_{mul}, \ell, \Delta^2) \mapsto (ct''_{mul}, \ell 1, \Delta)$ change the scale (plaintext)

- 139 evaluator.relinearize_inplace(x3_encrypted, relin_keys);
- 151 evaluator.rescale_to_next_inplace(x3_encrypted);

166 evaluator.multiply_plain(x1_encrypted, plain_coeff3, x1_encrypted_coeff3);

169 evaluator.rescale_to_next_inplace(x1_encrypted_coeff3);

- 182 evaluator.multiply_inplace(x3_encrypted, x1_encrypted_coeff3);
- 183 evaluator.relinearize_inplace(x3_encrypted, relin_keys);
- 186 evaluator.rescale_to_next_inplace(x3_encrypted);

Theory to Practice

- HE parameter: $\log Q > (\text{Depth of circuit } L) * (\log \Delta)$
 - Arithmetic operations modulo a large integer are very expensive
 - Set $Q_{\ell} = q_0 \cdot q_1 q_2 \dots q_{\ell}$, $1 \leq \ell \leq L$ for distinct primes q_1, \dots, q_L and use the CRT representation
- <Rescale> ciphertext modulus from Q_{ℓ} down to $Q_{\ell-1} = Q_{\ell}/q_{\ell}$
 - The scaling factor is divided by $q_\ell \neq \Delta$
 - Updates the scaling factor of a ciphertext along the computation (double ciphertext.scale())

Theory to Practice

- How can we add ciphertexts with different scales?
 - Simple: set ciphertext.scale() = Δ ($q_{\ell} \approx \Delta$ for the stability of scaling factors $\Delta \approx \Delta' \approx \Delta''$)
 - Complex (accurate): TMI
- Precision?
 - Basic operations: $\log \Delta \log(\text{noise})$ bits of precision, $\log(\text{noise}) \approx 10 \sim 15$
 - Complex circuit: need for numerical analysis

Parameter setting

 $F(x) = \pi * x^3 + 0.4 * x + 1$

Modulus switching

76

- Special prime (modulus) : q_{L+1}
- public key, relinearization key, rotation key : modulus $Q_{L+1} = q_0 \cdot q_1 \dots q_L \cdot q_{L+1}$
- Requirement: $q_{L+1} \ge q_i$, $\forall i$

```
size_t poly_modulus_degree = 8192;
parms.set_poly_modulus_degree(poly_modulus_degree);
parms.set_coeff_modulus(CoeffModulus::Create(
    poly_modulus_degree, { 60, 40, 40, 60 }));
```

 $\begin{cases} n = 2^{13} \\ (\text{security: } \log Q_{L+1} = \sum_{i} \log q_{i} \le 218 \) \\ [\log q_{0}] = 60 \\ [\log q_{1}] = [\log q_{2}] = 40 = \log \Delta \\ [\log q_{3}] = 60 \end{cases}$

Level 2 HE system, (roughly) 30-bit precision Correct decryption if $res < 2^{20}$

+ Rotation (slot shifting)

Ciphertext

Ciphertext

5_rotation.cpp

Bootstrapping

- Raise the level of a ciphertext
 - Recover the computational capability
 - Overcome the limitation of leveled HE system
 - Very expensive (seconds ~ minutes)