# Introduction to CKKS 

(a.k.a. Approximate Homomorphic Encryption)

Yongsoo Song<br>Private AI Bootcamp<br>Microsoft Research, Dec 02

## What is CKKS?

Plain Computation

- bool, int (uint64), modulo p
- double (float)


## Encrypted Computation

## BGV, BFV, TFHE

CKKS
[Cheon-Kim-Kim-Song, Asiacrypt'17] Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN)
[Cheon-Han-Kim-Kim-Song, Eurocrypt'18] Bootstrapping for Approximate Homomorphic Encryption [Cheon-Han-Kim-Kim-Song, SAC'18] A Full RNS Variant of Approximate Homomorphic Encryption [Chen-Chillotti-Song, Eurocrypt'19] Improved Bootstrapping for Approximate Homomorphic Encryption

## SEAL/native/examples/4_ckks_basic.cpp

Compute $F(x)=\pi * x^{3}+0.4 * x+1$ for $x=x_{1}, x_{2}, \ldots$

## Approximate Arithmetic

Floating-point representation

$$
1.01011=\underbrace{101011}_{\text {significand }} * \underbrace{2^{-5}}_{\text {scaling factor (base }{ }^{\text {exponent }} \text { ) }}
$$

- Floating-point Arithmetic (double, IEEE 754)
- The significand is assumed to have a binary point to the right of the leftmost bit

$$
\left(101011 * 2^{-5}\right) *\left(110111 * 2^{-5}\right)=100100111101 * 2^{-10} \approx 100101 * 2^{-4}
$$

- Fixed-point Arithmetic : more suitable for HE
- The scaling factor is the same for all values of the same type, and does not change during the entire computation

$$
\left(101011 * 2^{-5}\right) *\left(110111 * 2^{-5}\right)=100100111101 * 2^{-10} \approx 1001010 * 2^{-5}
$$

## Algorithms in CKKS



## Encoding \& Decoding



Message vector Scaling factor

84 double scale $=\operatorname{pow}(2.0,40)$;

## Plaintext (Encoded message)

$$
m\left(\zeta_{j}\right) \approx \Delta \cdot z_{j} \text { for some roots } \zeta_{j} \text { of } X^{n}+1=0
$$

$$
\begin{aligned}
& \text { Toy example }: n=4 \\
& \begin{array}{l}
\left(z_{1}, z_{2}\right)=(1.2-3.4 i, 5.6+7.8 i), \Delta=2^{7} \quad \mapsto \quad m(X)=435-706 X+282 X^{2}-308 X^{3} \\
\qquad m\left(\zeta_{1}\right)=2^{7}(1.1988 \ldots+i * 3.3984 \ldots), \quad m\left(\zeta_{2}\right)=2^{7}(5.5970 \ldots+i * 7.8047 \ldots)
\end{array}
\end{aligned}
$$

## Encoding of a vector

$$
F(x)=\pi * x^{3}+0.4 * x+1
$$

vector<double> input;
input.reserve(slot_count);
slot_count $=n / 2$
double curr_point = 0;
double step_size $=1.0 /($ static_cast<double>(slot_count) - 1);
for (size_t i = 0; i < slot_count; i++, curr_point += step_size) input $=\left(x_{1}, \ldots, x_{n / 2}\right)$
\{
input.push_back(curr_point);
\}

```
Plaintext x_plain;
print_line(__LINE__);
cout << "Encode input vectors." << endl;
encoder.encode(input, scale, x_plain);
```



## Encoding of a scalar

$$
F(x)=\pi * x^{3}+0.4 * x+1
$$

```
Plaintext plain_coeff3, plain_coeff1, plain_coeff0;
```

encoder.encode(3.14159265, scale, plain_coeff3);
plain_coeff3 $\approx$
encoder.encode(0.4, scale, plain_coeff1);
encoder.encode(1.0, scale, plain_coeff0);


## Encrypt \& Decrypt



- Encrypt: $m(X) \mapsto c t=\left(c_{0}(X), c_{1}(X)\right) \in R_{Q}^{2}$ such that $c_{0}+c_{1} s \approx m(\bmod Q)$
- Correctness: $\|m\|<Q$.
- Notation: $\operatorname{ct}(S)=c_{0}+c_{1} S \in R_{Q}[S]$
- Warning: An encryption of $m$ is not decrypted to exactly $m$ but $m+e$ for some error $e$ such that $|e|<$ bound


## Encrypt \& Decrypt



```
128 Ciphertext x1_encrypted;
129 encryptor.encrypt(x_plain, x1_encrypted);
```


## Plain - Cipher mult

$$
\begin{aligned}
& m \in R \\
& c t=\left(c_{0}, c_{1}\right) \in R_{Q}^{2} \\
& \begin{array}{|c|}
\hline \Delta \cdot x_{1} \\
\hline \Delta \cdot x_{2} \\
\hline
\end{array} \\
& \Delta \cdot x_{n / 2} \\
& \text { Plaintext } \\
& \text { Ciphertext } \\
& \text { Ciphertext }
\end{aligned}
$$

166 evaluator.multiply_plain(x1_encrypted, plain_coeff3, x1_encrypted_coeff3);

## Cipher - Cipher mult \& Relinearization

| $\frac{\Delta \cdot x_{1}}{\Delta \cdot x_{2}}$ |
| :---: |
| $\frac{\Delta}{\Delta \cdot x_{n / 2}}$ |


|  |  |
| :---: | :---: |
|  | * |

- $c t(S)=c_{0}+c_{1} S \in R_{Q}[S]$
- $c t_{m u l}=c t * c t^{\prime}=d_{0}+d_{1} S+d_{2} S^{2}$

- relinearize: $c t_{m u l} \mapsto c t_{m u l}^{\prime}=d_{0}^{\prime}+d_{1}^{\prime} S$
- change the format of ciphertext while (almost) preserving encrypted plaintext
- (almost always) performed after cipher-cipher multiplication


## Cipher - Cipher mult \& Relinearization



* |  | $\Delta \cdot y_{1}$ |
| :---: | :---: |
|  | $\Delta \cdot y_{2}$ |
|  | $\vdots$ |
|  | $\Delta \cdot y_{n / 2}$ |


evaluator.square(x1_encrypted, x3_encrypted);
139
evaluator.relinearize_inplace(x3_encrypted, relin_keys);

## Rescale

- Usually performed after multiplication
- Rescale $c t \in R_{Q}^{2} \mapsto c t^{\prime} \in R_{Q^{\prime}}^{2}$ for $Q^{\prime}<Q$

- Ciphertext \& plaintext are (approximately) divided by $\Delta$
- Input \& output are encryptions of the same message with different representations
- Scaling factor $\Delta^{2} \mapsto \Delta$, ctx modulus $Q \mapsto Q^{\prime}=Q / \Delta$


Add/Mult between ctxs with different moduli


## $((x y) z) w$ vs $(x y)(z w)$



Ciphertext modulus: $Q \quad \mapsto \quad Q^{\prime}=Q / \Delta \quad \mapsto \quad Q^{\prime \prime}=Q / \Delta^{2} \mapsto \quad Q^{\prime \prime \prime}=Q / \Delta^{3}$

## $((x y) z) w$ vs $(x y)(z w)$



Ciphertext modulus: $Q \quad \mapsto \quad Q^{\prime}=Q / \Delta \quad \mapsto \quad Q^{\prime \prime}=q / \Delta^{2}$

## Ciphertext level

- $Q=q_{0} \cdot \Delta^{L}$
- $q_{0}$ : base modulus (which is usually set to be $\gg \Delta$ )
- $Q_{\ell}=q_{0} \cdot \Delta^{\ell}$
- "Ciphertext level is $\ell$ " = "Ciphertext modulus is $Q_{\ell}$ "
- Level = Computational capability
- Ciphertext level decreases as the computation progresses
- No more (multiplicative) arithmetic is allowed for 0-level ciphertexts but decryption
- <Multiplication> $(c t, \ell, \Delta),\left(c t^{\prime}, \ell, \Delta\right) \mapsto\left(c t_{m u l}, \ell, \Delta^{2}\right)$ product of plaintexts $\&$ scaling factors
- <Relinearization> $\left(c t_{m u l}, \ell, \Delta^{2}\right) \mapsto\left(c t_{m u l}^{\prime}, \ell, \Delta^{2}\right)$
- <Rescale> $\left(c t_{m u l}^{\prime}, \ell, \Delta^{2}\right) \mapsto\left(c t_{m u l}^{\prime \prime}, \ell-1, \Delta\right)$ change the scale (plaintext)
$F(x)=\pi * x^{3}+0.4 * x+1$

Square, relinearize, rescale
(ct-ct) mult, relinearize, rescale

$F(x)=\pi * x^{3}+0.4 * x+1$

Square, relinearize, rescale
(ct-ct) mult, relinearize, rescale


```
138
```

evaluator.square(x1_encrypted, x3_encrypted);

```
evaluator.square(x1_encrypted, x3_encrypted);
evaluator.relinearize_inplace(x3_encrypted, relin_keys);
evaluator.relinearize_inplace(x3_encrypted, relin_keys);
evaluator.rescale_to_next_inplace(x3_encrypted);
```

evaluator.rescale_to_next_inplace(x3_encrypted);

```
\(F(x)=\pi * x^{3}+0.4 * x+1\)

Square, relinearize, rescale
(ct-ct) mult, relinearize, rescale

    evaluator.multiply_plain(x1_encrypted, plain_coeff3, x1_encrypted_coeff3);
\(F(x)=\pi * x^{3}+0.4 * x+1\)

Square, relinearize, rescale
(ct-ct) mult, relinearize, rescale

\[
\text { Ciphertext modulus : } Q \quad \mapsto \quad Q^{\prime}=Q / \Delta \quad \mapsto \quad Q^{\prime \prime}=Q / \Delta^{2}
\]
    evaluator.multiply_inplace(x3_encrypted, x1_encrypted_coeff3);
    evaluator.relinearize_inplace(x3_encrypted, relin_keys);
evaluator.rescale_to_next_inplace(x3_encrypted);

\section*{Theory to Practice}
- HE parameter: \(\log Q>(\) Depth of circuit \(L) *(\log \Delta)\)
- Arithmetic operations modulo a large integer are very expensive
- Set \(Q_{\ell}=q_{0} \cdot q_{1} q_{2} \ldots q_{\ell}, 1 \leq \ell \leq L\) for distinct primes \(q_{1}, \ldots, q_{L}\) and use the CRT representation
- <Rescale> ciphertext modulus from \(Q_{\ell}\) down to \(Q_{\ell-1}=Q_{\ell} / q_{\ell}\)
- The scaling factor is divided by \(q_{\ell} \neq \Delta\)
- Updates the scaling factor of a ciphertext along the computation (double ciphertext.scale() )


\section*{Theory to Practice}
- How can we add ciphertexts with different scales?
- Simple: set ciphertext.scale ()\(=\Delta\left(q_{\ell} \approx \Delta\right.\) for the stability of scaling factors \(\left.\Delta \approx \Delta^{\prime} \approx \Delta^{\prime \prime}\right)\)
- Complex (accurate): TMI
- Precision?
- Basic operations: \(\log \Delta-\log\) (noise) bits of precision, \(\log\) (noise) \(\approx 10 \sim 15\)
- Complex circuit: need for numerical analysis


\section*{Parameter setting}
\[
F(x)=\pi * x^{3}+0.4 * x+1
\]
- Modulus switching
- Special prime (modulus) : \(q_{L+1}\)
- public key, relinearization key, rotation key : modulus \(Q_{L+1}=q_{0} \cdot q_{1} \ldots q_{L} \cdot q_{L+1}\)
- Requirement: \(q_{L+1} \geq q_{i}, \forall i\)
```

size_t poly_modulus_degree = 8192;
parms.set_poly_modulus_degree(poly_modulus_degree);
parms.set_coeff_modulus(CoeffModulus::Create(
poly_modulus_degree, { 60, 40, 40, 60 }));

```
\[
\begin{aligned}
& n=2^{13} \\
& \text { (security: } \log Q_{L+1}=\sum_{i} \log q_{i} \leq 218 \text { ) }
\end{aligned}
\]
\[
\left\lceil\log q_{0}\right\rceil=60
\]
\[
\left\lceil\log q_{1}\right\rceil=\left\lceil\log q_{2}\right\rceil=40=\log \Delta
\]
\[
\left\lceil\log q_{3}\right\rceil=60
\]

Level 2 HE system, (roughly) 30-bit precision Correct decryption if res \(<2^{20}\)

\section*{+ Rotation (slot shifting)}


5_rotation.cpp

\section*{Bootstrapping}
\begin{tabular}{|c|c|}
\hline & \(\Delta \cdot x_{1}\) \\
\hline \hline & \(\Delta \cdot x_{2}\) \\
\hline \hline & \(\vdots\) \\
\hline \hline & \(\Delta \cdot x_{n / 2}\) \\
\hline \hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline & \(\Delta \cdot x_{1}\) \\
\hline \hline & \\
\hline \hline
\end{tabular}
- Raise the level of a ciphertext
- Recover the computational capability
- Overcome the limitation of leveled HE system
- Very expensive (seconds ~ minutes)```

