
Introduction to CKKS
(a.k.a. Approximate Homomorphic Encryption)

Yongsoo Song

Private AI Bootcamp

Microsoft Research, Dec 02

What is CKKS?
Plain Computation Encrypted Computation

▪ bool, int (uint64), modulo p BGV, BFV, TFHE

▪ double (float) CKKS

SEAL/native/examples/4_ckks_basic.cpp
Compute 𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1 for 𝑥 = 𝑥1, 𝑥2, …

[Cheon-Kim-Kim-Song, Asiacrypt’17] Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN)

[Cheon-Han-Kim-Kim-Song, Eurocrypt’18] Bootstrapping for Approximate Homomorphic Encryption

[Cheon-Han-Kim-Kim-Song, SAC’18] A Full RNS Variant of Approximate Homomorphic Encryption

[Chen-Chillotti-Song, Eurocrypt’19] Improved Bootstrapping for Approximate Homomorphic Encryption

…

Approximate Arithmetic

▪ Floating-point Arithmetic (double, IEEE 754)

▪ The significand is assumed to have a binary point to the right of the leftmost bit

101011 ∗ 2−5 ∗ 110111 ∗ 2−5 = 100100111101 ∗ 2−10 ≈ 100101 ∗ 2−4

▪ Fixed-point Arithmetic : more suitable for HE

▪ The scaling factor is the same for all values of the same type, and does not change during the

entire computation

101011 ∗ 2−5 ∗ 110111 ∗ 2−5 = 100100111101 ∗ 2−10 ≈ 1001010 ∗ 2−5

Floating-point representation
1.01011 = 101011 ∗ 2−5

significand scaling factor (baseexponent)

Algorithms in CKKS

Message

Scaling factor

Plaintext
encoding (pk/sk)

encrypt

Ciphertext

Ciphertext

Homomorphic operations
(encrypted computation)

(pt-ct/ct-ct) add, mult
rescale, rotation, etc.

decrypt
Message Plaintext

decoding

Scaling factor

Encoding & Decoding

ℂ𝑛/2 × ℝ 𝑅 = Τℤ[𝑋] (𝑋𝑛 + 1)encoding

decoding

𝑚 𝑋 ≈

𝑚 𝜁𝑗 ≈ Δ ⋅ 𝑧𝑗 for some roots 𝜁𝑗 of 𝑋𝑛 + 1 = 0

Message vector Scaling factor Plaintext (Encoded message)

i-th slot of plaintext

𝑧1

𝑧2

𝑧𝑛/2

Δ

⋮

Δ ⋅ 𝑧1

Δ ⋅ 𝑧2

⋮

Δ ⋅ 𝑧𝑛/2

Toy example : 𝑛 = 4
𝑧1, 𝑧2 = 1.2 − 3.4𝑖, 5.6 + 7.8𝑖 , Δ = 27 ↦ 𝑚 𝑋 = 435 − 706𝑋 + 282𝑋2 − 308𝑋3

𝑚 𝜁1 = 27 1.1988…+ 𝑖 ∗ 3.3984… , 𝑚 𝜁2 = 27(5.5970…+ 𝑖 ∗ 7.8047…)

Encoding of a vector

input = (𝑥1, … , 𝑥 Τ𝑛 2)

slot _ count = Τ𝑛 2

x _ plain ≈

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Encoding of a scalar

Δ ⋅ 𝜋

Δ ⋅ 𝜋

⋮

Δ ⋅ 𝜋

plain_coeff3 ≈

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Encrypt & Decrypt

▪ Encrypt: 𝑚 𝑋 ↦ 𝑐𝑡 = 𝑐0 𝑋 , 𝑐1 𝑋 ∈ 𝑅𝑄
2 such that 𝑐0 + 𝑐1𝑠 ≈ 𝑚 (𝑚𝑜𝑑 𝑄)

▪ Correctness: 𝑚 < 𝑄.

▪ Notation: 𝑐𝑡 𝑆 = 𝑐0 + 𝑐1𝑆 ∈ 𝑅𝑄[𝑆]

▪ Warning: An encryption of 𝑚 is not decrypted to exactly 𝑚 but 𝑚 + 𝑒 for some error 𝑒

such that 𝑒 < 𝑏𝑜𝑢𝑛𝑑

𝑚 𝑋 ∈ 𝑅 𝑐𝑡 = 𝑐0 𝑋 , 𝑐1 𝑋 ∈ 𝑅𝑄
2 , 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑛 + 1)

Encrypt (pk/sk)

Decrypt (sk = 𝑠)

Plaintext

Δ ⋅ 𝑧1

Δ ⋅ 𝑧2

⋮

Δ ⋅ 𝑧𝑛/2

Ciphertext

Δ ⋅ 𝑧1

Δ ⋅ 𝑧2

⋮

Δ ⋅ 𝑧𝑛/2MSB LSB

log 𝑄 bits

Encrypt & Decrypt

𝑚 𝑋 ∈ 𝑅 𝑐𝑡 = 𝑐0 𝑋 , 𝑐1 𝑋 ∈ 𝑅𝑄
2 , 𝑅𝑄 = ℤ𝑄 𝑋 /(𝑋𝑛 + 1)

Encrypt (pk/sk)

Decrypt (sk = 𝑠)

Plaintext

Δ ⋅ 𝑧1

Δ ⋅ 𝑧2

⋮

Δ ⋅ 𝑧𝑛/2

Ciphertext

Δ ⋅ 𝑧1

Δ ⋅ 𝑧2

⋮

Δ ⋅ 𝑧𝑛/2MSB LSB

log 𝑄 bits

Plain – Cipher mult

𝑚 ∈ 𝑅 𝑐𝑡 = 𝑐0, 𝑐1 ∈ 𝑅𝑄
2

Plaintext

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Ciphertext

Δ ⋅ 𝑦1

Δ ⋅ 𝑦2

⋮

Δ ⋅ 𝑦𝑛/2

Δ2 ⋅ 𝑥1𝑦1

Δ2 ⋅ 𝑥2𝑦2

⋮

Δ2 ⋅ 𝑥 Τ𝑛 2𝑦 Τ𝑛 2

Ciphertext

𝑐𝑡′ = 𝑐0′, 𝑐1′ ∈ 𝑅𝑄
2

Cipher – Cipher mult & Relinearization
Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Δ2 ⋅ 𝑥1𝑦1

Δ2 ⋅ 𝑥2𝑦2

⋮

Δ2 ⋅ 𝑥 Τ𝑛 2𝑦 Τ𝑛 2

Δ ⋅ 𝑦1

Δ ⋅ 𝑦2

⋮

Δ ⋅ 𝑦𝑛/2

▪ 𝑐𝑡 𝑆 = 𝑐0 + 𝑐1𝑆 ∈ 𝑅𝑄[𝑆]

▪ 𝑐𝑡𝑚𝑢𝑙 = 𝑐𝑡 ∗ 𝑐𝑡′ = 𝑑0 + 𝑑1𝑆 + 𝑑2𝑆
2

▪ 𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒: 𝑐𝑡𝑚𝑢𝑙 ↦ 𝑐𝑡𝑚𝑢𝑙
′ = 𝑑0

′ + 𝑑1
′𝑆

▪ change the format of ciphertext while (almost) preserving encrypted plaintext

▪ (almost always) performed after cipher-cipher multiplication

Cipher – Cipher mult & Relinearization
Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Δ2 ⋅ 𝑥1𝑦1

Δ2 ⋅ 𝑥2𝑦2

⋮

Δ2 ⋅ 𝑥 Τ𝑛 2𝑦 Τ𝑛 2

Δ ⋅ 𝑦1

Δ ⋅ 𝑦2

⋮

Δ ⋅ 𝑦𝑛/2

Rescale

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥 Τ𝑛 2

Δ2 ⋅ 𝑥1

Δ2 ⋅ 𝑥2

⋮

Δ2 ⋅ 𝑥 Τ𝑛 2

▪ Usually performed after multiplication

▪ Rescale 𝑐𝑡 ∈ 𝑅𝑄
2 ↦ 𝑐𝑡′ ∈ 𝑅𝑄′

2 for 𝑄′ < 𝑄

▪ Ciphertext & plaintext are (approximately) divided by Δ

▪ Input & output are encryptions of the same message

with different representations

▪ Scaling factor Δ2 ↦ Δ, ctx modulus 𝑄 ↦ 𝑄′ = Τ𝑄 Δ

log Δ bits

log (Τ𝑄 Δ) bits

MSB LSB

Add/Mult between ctxs with different moduli

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Δ2 ⋅ 𝑥1𝑦1

Δ2 ⋅ 𝑥2𝑦2

⋮

Δ2 ⋅ 𝑥 Τ𝑛 2𝑦 Τ𝑛 2

Δ ⋅ 𝑦1

Δ ⋅ 𝑦2

⋮

Δ ⋅ 𝑦𝑛/2

wasted

MSB LSB

𝑥𝑦 𝑧 𝑤 vs 𝑥𝑦 𝑧𝑤

Δ ⋅ 𝑥𝑖

Δ ⋅ 𝑦𝑖

Δ ⋅ 𝑥𝑖𝑦𝑖

Mult & Rescale

Δ ⋅ 𝑧𝑖

Δ ⋅ 𝑤𝑖

Δ ⋅ 𝑥𝑖𝑦𝑖𝑧𝑖

Ciphertext modulus : 𝑄 ↦ 𝑄′ = Τ𝑄 Δ ↦ 𝑄′′ = Τ𝑄 Δ2 ↦ 𝑄′′′ = Τ𝑄 Δ3

Δ ⋅ 𝑥𝑖𝑦𝑖𝑧𝑖𝑤𝑖

Δ ⋅ 𝑥𝑖

Δ ⋅ 𝑦𝑖

Δ ⋅ 𝑥𝑖𝑦𝑖

Mult & Rescale

Δ ⋅ 𝑧𝑖

Δ ⋅ 𝑤𝑖

Δ ⋅ 𝑧𝑖𝑤𝑖

Δ ⋅ 𝑥𝑖𝑦𝑖𝑧𝑖𝑤𝑖

Ciphertext modulus : 𝑄 ↦ 𝑄′ = Τ𝑄 Δ ↦ 𝑄′′ = 𝑞/Δ2

𝑥𝑦 𝑧 𝑤 vs 𝑥𝑦 𝑧𝑤

Ciphertext level

▪ 𝑄 = 𝑞0 ⋅ Δ
𝐿

▪ 𝑞0 : base modulus (which is usually set to be >> Δ)

▪ 𝑄ℓ = 𝑞0 ⋅ Δ
ℓ

▪ “Ciphertext level is ℓ” = “Ciphertext modulus is 𝑄ℓ”

▪ Level = Computational capability

▪ Ciphertext level decreases as the computation progresses

▪ No more (multiplicative) arithmetic is allowed for 0-level ciphertexts but decryption

▪ <Multiplication> 𝑐𝑡, ℓ, Δ , 𝑐𝑡′, ℓ, Δ ↦ (𝑐𝑡𝑚𝑢𝑙, ℓ, Δ
2) product of plaintexts & scaling factors

▪ <Relinearization> 𝑐𝑡𝑚𝑢𝑙, ℓ, Δ
2 ↦ (𝑐𝑡𝑚𝑢𝑙

′ , ℓ, Δ2)

▪ <Rescale> 𝑐𝑡𝑚𝑢𝑙
′ , ℓ, Δ2 ↦ 𝑐𝑡𝑚𝑢𝑙

′′ , ℓ − 1, Δ change the scale (plaintext)

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Δ ⋅ 𝑥𝑖 Δ ⋅ 𝑥𝑖
2

Square, relinearize, rescale

Δ ⋅ 𝜋𝑥𝑖

Δ ⋅ 𝜋𝑥𝑖
3

Δ ⋅ 𝜋

(pt-ct) mult, rescale

(ct-ct) mult, relinearize, rescale

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Δ ⋅ 𝑥𝑖 Δ ⋅ 𝑥𝑖
2

Square, relinearize, rescale

Δ ⋅ 𝜋𝑥𝑖

Δ ⋅ 𝜋𝑥𝑖
3

Ciphertext modulus : 𝑄 ↦ 𝑄′ = Τ𝑄 Δ

Δ ⋅ 𝜋

(pt-ct) mult, rescale

(ct-ct) mult, relinearize, rescale

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Δ ⋅ 𝑥𝑖 Δ ⋅ 𝑥𝑖
2

Square, relinearize, rescale

Δ ⋅ 𝜋𝑥𝑖

Δ ⋅ 𝜋𝑥𝑖
3

Δ ⋅ 𝜋

(pt-ct) mult, rescale

(ct-ct) mult, relinearize, rescale

Ciphertext modulus : 𝑄 ↦ 𝑄′ = Τ𝑄 Δ

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

Δ ⋅ 𝑥𝑖 Δ ⋅ 𝑥𝑖
2

Square, relinearize, rescale

Δ ⋅ 𝜋𝑥𝑖

Δ ⋅ 𝜋𝑥𝑖
3

Δ ⋅ 𝜋

(pt-ct) mult, rescale

(ct-ct) mult, relinearize, rescale

Ciphertext modulus : 𝑄 ↦ 𝑄′ = Τ𝑄 Δ ↦ 𝑄′′ = Τ𝑄 Δ2

Theory to Practice
▪ HE parameter: log 𝑄 > (Depth of circuit 𝐿) * (log Δ)

▪ Arithmetic operations modulo a large integer are very expensive

▪ Set 𝑄ℓ = 𝑞0 ⋅ 𝑞1𝑞2…𝑞ℓ, 1 ≤ ℓ ≤ 𝐿 for distinct primes 𝑞1, … , 𝑞𝐿 and use the CRT representation

▪ <Rescale> ciphertext modulus from 𝑄ℓ down to 𝑄ℓ−1 = Τ𝑄ℓ 𝑞ℓ
▪ The scaling factor is divided by 𝑞ℓ ≠ Δ

▪ Updates the scaling factor of a ciphertext along the computation (double ciphertext.scale())

Δ ⋅ 𝑥𝑖 Δ′ ⋅ 𝑥𝑖
2

Δ′ ⋅ 𝜋𝑥𝑖

Δ′′ ⋅ 𝜋𝑥𝑖
3

Δ ⋅ 𝜋

Ciphertext modulus: 𝑄2 𝑄1 = Τ𝑄2 𝑞2 𝑄0 = Τ𝑄1 𝑞1
Plaintext scaling factor: Δ = 240 Δ′ = ΤΔ2 𝑞2 Δ′′ = ൗΔ′

2
𝑞1

Δ ⋅ (0.4) Δ′(0.4𝑥𝑖)

▪ How can we add ciphertexts with different scales?

▪ Simple: set ciphertext.scale() = Δ (𝑞ℓ ≈ Δ for the stability of scaling factors Δ ≈ Δ′ ≈ Δ′′)

▪ Complex (accurate): TMI

▪ Precision?

▪ Basic operations: log Δ − log noise bits of precision, log noise ≈ 10~15

▪ Complex circuit: need for numerical analysis

Theory to Practice

Δ ⋅ 𝑥𝑖 Δ′ ⋅ 𝑥𝑖
2

Δ′ ⋅ 𝜋𝑥𝑖

Δ′′ ⋅ 𝜋𝑥𝑖
3

Δ ⋅ 𝜋

Ciphertext modulus: 𝑄2 𝑄1 = Τ𝑄2 𝑞2 𝑄0 = Τ𝑄1 𝑞1
Plaintext scaling factor: Δ = 240 Δ′ = ΤΔ2 𝑞2 Δ′′ = ൗΔ′

2
𝑞1

Δ ⋅ (0.4) Δ′(0.4𝑥𝑖)

Parameter setting
▪ Modulus switching

▪ Special prime (modulus) : 𝑞𝐿+1
▪ public key, relinearization key, rotation key : modulus 𝑄𝐿+1 = 𝑞0 ⋅ 𝑞1…𝑞𝐿 ⋅ 𝑞𝐿+1
▪ Requirement: 𝑞𝐿+1 ≥ 𝑞𝑖, ∀𝑖

Level 2 HE system, (roughly) 30-bit precision
Correct decryption if 𝑟𝑒𝑠 < 220

𝑛 = 213

(security: log 𝑄𝐿+1 = σ𝑖 log 𝑞𝑖 ≤ 218)

log 𝑞0 = 60

log 𝑞1 = log 𝑞2 = 40 = log Δ

log 𝑞3 = 60

𝐹 𝑥 = 𝜋 ∗ 𝑥3 + 0.4 ∗ 𝑥 + 1

+ Rotation (slot shifting)

𝑐𝑡 = 𝑐0, 𝑐1 ∈ 𝑅𝑄
2

Ciphertext

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Ciphertext

𝑐𝑡′ = 𝑐0′, 𝑐1′ ∈ 𝑅𝑄
2

Δ ⋅ 𝑥2

Δ ⋅ 𝑥3

⋮

Δ ⋅ 𝑥1

5_rotation.cpp

Bootstrapping

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

Δ ⋅ 𝑥1

Δ ⋅ 𝑥2

⋮

Δ ⋅ 𝑥𝑛/2

▪ Raise the level of a ciphertext

▪ Recover the computational capability

▪ Overcome the limitation of leveled HE system

▪ Very expensive (seconds ~ minutes)

