Semi-Parallel GWAS using RNS-CKKS

Miran Kim¹, Baiyu Li², Daniele Micciancio², Yongsoo Song²

1: UT Health Science Center at Houston, 2: UC San Diego

Background

Approximate Homomorphic Encryption

The Approximate Homomorphic Encryption scheme [CKKS]: (Cheon et al. ASIACRYPT 2017)

- Supports three operations:
 - Add: $(Enc(m_1), Enc(m_2)) \rightarrow Enc(m' \approx m_1 + m_2)$
 - Mult: $(Enc(m_1), Enc(m_2)) \rightarrow Enc(m' \approx m_1 m_2)$
 - Scale: $Enc(m) \rightarrow Enc(m' \approx \Delta^{-1} m)$

CKKS is suitable for encrypted computation on real numbers

- Scale operation can manage the growth of space and complexity

Single Logistic Regression

Training of Logistic Regression Model [iDASH17]: (Kim et al. BMC Med Genomics 2018)

- Binary Classifier: Given $(y_i, x_i) \in \{\pm 1\} \times \mathbb{R}^k$, find $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$ such that sign $[(1, x_i) \cdot \boldsymbol{\beta}] = y_i$.
- Minimize the following loss using accelerated GD: $L(\beta) = \sum_{i} \log \left[1 + \exp(-y_i(1, x_i) \cdot \beta) \right].$

This Year's Task (Track 2)

Semi-parallel Genome Wide Association Studies:

Given
$$(y_i, \mathbf{x}_i, s_{ij}) \in \{\pm 1\} \times \mathbb{R}^{k+1}$$
, find $\boldsymbol{\beta}_{s_j}$ $(1 \le j \le p)$ such that $\text{sign}[(1, \mathbf{x}_i, s_{ij}) \cdot \boldsymbol{\beta}] = y_i$ for some $\boldsymbol{\beta} = (\boldsymbol{\beta}_X, \boldsymbol{\beta}_{s_j}) \in \mathbb{R}^{k+2}$.

- Step I: find a common logistic regression model β_X minimizing $L(\beta_X) = \sum_i \log \left[1 + \exp(-y_i(1, x_i) \cdot \beta_X) \right]$
- Step II: from $\boldsymbol{\beta} = (\boldsymbol{\beta}_X, 0)$, find individual $\boldsymbol{\beta}_{S_j}$ minimizing $\tilde{L}(\boldsymbol{\beta}^+) = \sum_i \log \left[1 + \exp(-y_i(1, \boldsymbol{x}_i, \boldsymbol{s}_{ij}) \cdot \boldsymbol{\beta}^+)\right]$ for some $\boldsymbol{\beta}^+ = (*, \beta_{S_j})$.

Our Solution

(Variant of) Full RNS Variant of CKKS

A Full RNS Variant of CKKS [RNS] (Cheon et al. SAC 2018):

- Use Residue Number System based on $q = p_1 p_2 \dots p_L$ where p_i 's are distinct primes close to $p = 2^k$
- All computations are performed on RNS representation without high-precision arithmetic (GMP, NTL free)
- Decomposition based key-switching (different from [RNS]) to minimize the parameter

Single GD & Individual (Parallel) NM

- Accelerated gradient descent [iDASH17] to build a model β_X .
- Run (single-iteration) Newton's method to compute $\boldsymbol{\beta}^+$ by $\boldsymbol{\beta}^+ \leftarrow \boldsymbol{\beta} \left(\nabla_{\boldsymbol{\beta}}^2 \tilde{L}\right)^{-1} \cdot \nabla_{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta})$

Newton's Method Formula

$$\boldsymbol{\beta}^+ = (*, \beta_{s_i}) \leftarrow (\tilde{X}^T W \tilde{X})^{-1} \cdot \tilde{X}^T W \boldsymbol{z}$$
 where

- $p_i = \sigma(\mathbf{x}_i^T \boldsymbol{\beta})$: probability predicted by a model w/o SNPs
- $W = diag(w_1, ..., w_n)$ for $w_i = p_i \cdot (1 p_i)$
- $\mathbf{z} = (\mathbf{x}_i^T \boldsymbol{\beta} + \mathbf{w}_i^{-1} (y_i p_i))_{1 \le i \le n}$
- $\tilde{X} = (X, s_j)$

$$\beta_{S_j} \leftarrow \frac{\left(s_j^T W z\right) - \left(s_j^T W X\right) \cdot \left(X^T W X\right)^{-1} \cdot \left(X^T W z\right)}{\left(s_j^T W s_j\right) - \left(s_j^T W X\right) \cdot \left(X^T W X\right)^{-1} \cdot \left(X^T W s_j\right)}, \ 1 \leq j \leq p.$$

Adjugate Matrix and Determinant

Let $A = X^T W X$ of size 4×4 . Its adjugate matrix $adj(A) = [b_{ij}]_{1 \le i, i \le 4}$ and determinant |A| are computed by:

$$b_{11} = a_{22}a_{33}a_{44} + a_{23}a_{34}a_{42} + a_{24}a_{32}a_{43}$$
$$-a_{24}a_{33}a_{42} - a_{23}a_{32}a_{44} - a_{22}a_{34}a_{43},$$

$$|A| = a_{11}a_{22}a_{33}a_{44} + \dots + a_{12}a_{24}a_{33}a_{41}.$$

- Use 'lazy' key-switching technique to reduce the complexity

Experimental Results

- Intel Core i5 @ 3.8GHZ processor
- Use the closed formula for linear regression method which minimizes the mean squared error (much faster, less accurate)

Method	$\log N$	$\log Q$	h	Timing				Memory	p-values
				KeyGen	Enc	Eval	Dec	Encrypted DB	(FP + FN)
Linear	13	245	130	0.12s	3.35s	1.61s	2.6ms	714MB	0.0059
Logistic	15	1060	170	7.14s	6.59s	53.66s	18 ms	1.7GB	0.0052

References

[CKKS] J. H. Cheon, A. Kim, M. Kim, & Y. Song, *Homomorphic encryption for arithmetic of approximate numbers – ASIACRYPT 2017.*

[iDASH17] A. Kim, Y. Song, M. Kim, K. Lee, & J. H. Cheon, *Logistic regression model training based on the approximate homomorphic encryption – BMC Med. Genomics*, 2018.

[RNS] J. H. Cheon, K. Han, A. Kim, M. Kim, & Y. Song, A Full RNS Variant of Approximate Homomorphic Encryption – SAC 2018.