Semi-parallel GWAS using RNS-CKKS

Miran Kim*, Baiyu Li[†], Daniele Micciancio[†], Yongsoo Song[†]

* University of Texas, Health Science Center at Houston

† University of California, San Diego

Oct. 15, 2018

Modifications of RNS-CKKS

- Base scheme: [CKKS]
 - Efficient for real number arithmetic

Modifications of RNS-CKKS

- Base scheme: [CKKS]
 - Efficient for real number arithmetic
- RNS variant [RNS]
 - Residue Number System based on $q = p_1 p_2 \dots p_L$ for distinct primes $p_i \approx p = 2^k$
 - All computation are performed on Residue Number System representation

Modifications of RNS-CKKS

- Base scheme: [CKKS]
 - Efficient for real number arithmetic
- □ RNS variant [RNS]
 - Residue Number System based on $q=p_1p_2\dots p_L$ for distinct primes $p_i\approx p=2^k$
 - All computation are performed on Residue Number System representation
- More optimizations (This work)
 - Decomposition based key-switching (vs modulus-raising)
 - Delay the key-switching & Compute on "Extended ctxt" (a.k.a. Lazy Key-Switching)

[CKKS] Homomorphic Encryption for Arithmetic of Approximate Numbers, Asiacrypt 2017

[RNS] A Full-RNS variant of Approximate Homomorphic Encryption, SAC 2018

Given $(y_i, x_i, s_{ij}) \in \{\pm 1\} \times \mathbb{R}^{k+1}$, find $\beta_j = (\beta_X, \beta_{s_i}) \in \mathbb{R}^{k+2}$ such that $\operatorname{sign}[(1, x_i, s_{ij}) \cdot \beta] = y_i$ for all j.

- Given $(y_i, x_i, s_{ij}) \in \{\pm 1\} \times \mathbb{R}^{k+1}$, find $\boldsymbol{\beta}_j = (\boldsymbol{\beta}_X, \boldsymbol{\beta}_{s_i}) \in \mathbb{R}^{k+2}$ such that $\operatorname{sign}[(1, x_i, s_{ij}) \cdot \boldsymbol{\beta}] = y_i$ for all j.
- Semi-parallel Logistic Regression [Sikorska et al.]

- Given $(y_i, x_i, s_{ij}) \in \{\pm 1\} \times \mathbb{R}^{k+1}$, find $\beta_j = (\beta_X, \beta_{s_i}) \in \mathbb{R}^{k+2}$ such that $\operatorname{sign}[(1, x_i, s_{ij}) \cdot \beta] = y_i$ for all j.
- Semi-parallel Logistic Regression [Sikorska et al.]
 - Step I: Train a common (independent from j) model β_X minimizing

$$L(\boldsymbol{\beta}_X) = \sum_{i=1}^{n} \log[1 + \exp(-y_i(1, \boldsymbol{x}_i) \cdot \boldsymbol{\beta}_X)]$$

- Given $(y_i, x_i, s_{ij}) \in \{\pm 1\} \times \mathbb{R}^{k+1}$, find $\boldsymbol{\beta}_j = (\boldsymbol{\beta}_X, \boldsymbol{\beta}_{s_i}) \in \mathbb{R}^{k+2}$ such that $\operatorname{sign}[(1, x_i, s_{ij}) \cdot \boldsymbol{\beta}] = y_i$ for all j.
- Semi-parallel Logistic Regression [Sikorska et al.]
 - Step I: Train a common (independent from j) model β_X minimizing

$$L(\boldsymbol{\beta}_X) = \sum_{i=1}^{n} \log[1 + \exp(-y_i(1, \boldsymbol{x}_i) \cdot \boldsymbol{\beta}_X)]$$

• Step 2: From $\beta = (\beta_X, 0)$, for each s_j $(1 \le j \le p)$, find β_{s_j} which minimizes

$$\tilde{L}(\boldsymbol{\beta}_{j}) = \sum \log[1 + \exp(-y_{i}(1, \boldsymbol{x}_{i}, \boldsymbol{s}_{ij}) \cdot \boldsymbol{\beta}_{j})] \text{ for some } \boldsymbol{\beta}_{j} = (*, \boldsymbol{\beta}_{s_{j}}).$$

Step I: Common Logistic Regression

Train a common model β_X minimizing $L(\beta_X) = \sum \log[1 + \exp(-(1, x_i) \cdot \beta_X)]$

Step I: Common Logistic Regression

Train a common model β_X minimizing $L(\beta_X) = \sum \log[1 + \exp(-(1, x_i) \cdot \beta_X)]$

☐ Gradient Decent method [iDASH17]

Step I: Common Logistic Regression

Train a common model β_X minimizing $L(\beta_X) = \sum \log[1 + \exp(-(1, x_i) \cdot \beta_X)]$

- ☐ Gradient Decent method [iDASH17]
 - Evaluate the formula recursively:

$$\boldsymbol{\beta}_{t+1} \leftarrow \boldsymbol{\beta}_t + \frac{1}{n} \cdot \sum_{i=1}^n \sigma_3(-(1, \boldsymbol{x}_i) \cdot \boldsymbol{\beta}_t) \cdot (1, \boldsymbol{x}_i)$$

Matrix encoding & accelerated GD

Step 2: Individual (parallel) Logistic Regression

From
$$\boldsymbol{\beta} = (\boldsymbol{\beta}_X, 0)$$
, find $\boldsymbol{\beta}_{\boldsymbol{s}_j}$ of $\boldsymbol{\beta}^+ = (*, \beta_{s_j})$ minimizing
$$\tilde{L}(\boldsymbol{\beta}^+) = \sum \log[1 + \exp(-y_i(1, \boldsymbol{x}_i, \boldsymbol{s}_{ij}) \cdot \boldsymbol{\beta}^+)]$$

Step 2: Individual (parallel) Logistic Regression

From
$$\boldsymbol{\beta}=(\boldsymbol{\beta}_X,0)$$
, find $\boldsymbol{\beta}_{\boldsymbol{s}_j}$ of $\boldsymbol{\beta}^+=\left(*,\beta_{s_j}\right)$ minimizing

$$\tilde{L}(\boldsymbol{\beta}^{+}) = \sum \log[1 + \exp(-y_{i}(1, \boldsymbol{x}_{i}, \boldsymbol{s}_{ij}) \cdot \boldsymbol{\beta}^{+})]$$

■ Newton's method (single iteration)

$$\boldsymbol{\beta}^+ \leftarrow \boldsymbol{\beta} - \left(\nabla_{\boldsymbol{\beta}}^2 \tilde{L}\right)^{-1} \cdot \nabla_{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta})$$

for the Hessian matrix $\nabla_{\beta}^2 \tilde{L}$

Newton's method

 \square Single iteration at a starting point $\beta = (\beta_X, 0)$

$$\boldsymbol{\beta}^{+} = \left(*, \boldsymbol{\beta_{s_i}} \right) \leftarrow \boldsymbol{\beta} - \left(\nabla_{\boldsymbol{\beta}}^2 \tilde{L} \right)^{-1} \cdot \nabla_{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}) = \left(\tilde{X}^T W \tilde{X} \right)^{-1} \cdot \tilde{X}^T W \mathbf{z},$$

- $p_i = \sigma(\mathbf{x}_i^T \boldsymbol{\beta}_X)$: predicted probability by $\boldsymbol{\beta}_X$
- $W = diag(w_1, ..., w_n)$ for $w_i = p_i \cdot (1 p_i)$
- $\mathbf{z} = \left(\mathbf{x}_i^T \boldsymbol{\beta}_X + w_i^{-1} (y_i p_i)\right)_{1 \le i \le n}$
- $\tilde{X} = (X, s_j)$

Newton's method

 \square Single iteration at a starting point $\beta = (\beta_X, 0)$

$$\boldsymbol{\beta}^{+} = \left(*, \boldsymbol{\beta}_{\boldsymbol{s}_{\boldsymbol{j}}} \right) \leftarrow \boldsymbol{\beta} - \left(\nabla_{\boldsymbol{\beta}}^{2} \tilde{L} \right)^{-1} \cdot \nabla_{\boldsymbol{\beta}} \tilde{L}(\boldsymbol{\beta}) = \left(\tilde{X}^{T} W \tilde{X} \right)^{-1} \cdot \tilde{X}^{T} W \boldsymbol{z},$$

- $p_i = \sigma(\mathbf{x}_i^T \boldsymbol{\beta}_X)$: predicted probability by $\boldsymbol{\beta}_X$
- $W = diag(w_1, ..., w_n)$ for $w_i = p_i \cdot (1 p_i)$
- $\mathbf{z} = \left(\mathbf{x}_i^T \boldsymbol{\beta}_X + w_i^{-1} (y_i p_i)\right)_{1 \le i \le n}$
- $\tilde{X} = (X, s_j)$

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

eta_0	•••	β_k
:	•	•
eta_0	•••	β_k

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

eta_0	:	β_k
:	·	•••
eta_0	•••	eta_k

$x_1^T \boldsymbol{\beta}$	•••	$x_1^T \boldsymbol{\beta}$
	··	:
$x_n^T \boldsymbol{\beta}$	•••	$x_n^T \boldsymbol{\beta}$

p_1	•••	p_1
:	٠.	•••
p_n		p_n

w_i	=	p_i	•	(1	_	$p_i)$
_						→

w_1	::	w_1
:	··	
W_n	•••	w_n

$$\beta_{s_j} = \frac{(\mathbf{s}_j^T \mathbf{W} \mathbf{z}) - (\mathbf{s}_j^T \mathbf{W} \mathbf{X}) \cdot (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \cdot (\mathbf{X}^T \mathbf{W} \mathbf{z})}{(\mathbf{s}_j^T \mathbf{W} \mathbf{s}_j) - (\mathbf{s}_j^T \mathbf{W} \mathbf{X}) \cdot (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \cdot (\mathbf{X}^T \mathbf{W} \mathbf{s}_j)}$$

eta_0	:	eta_k
	÷	
eta_0	•••	eta_k

$x_1^T \boldsymbol{\beta}$	•••	$x_1^T \boldsymbol{\beta}$
•••	··	:
$x_n^T \boldsymbol{\beta}$	•••	$x_n^T \boldsymbol{\beta}$

	p_1	•••	p_1
	•••		•••
1	p_n	•••	p_n
$\sigma(\cdot)$			

W_1	•••	w_1
•••	··	•••
W_n	•••	w_n

$w_1 z_1$	•••	W_1Z_1
	••	:
$W_n Z_n$	•••	$w_n z_n$

$$\beta_{s_j} = \frac{(\mathbf{s}_j^T W \mathbf{z}) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(\mathbf{s}_j^T W \mathbf{s}_j) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{s}_j)}$$

$$\beta_{s_j} = \frac{(\mathbf{s}_j^T W \mathbf{z}) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(\mathbf{s}_j^T W \mathbf{s}_j) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{s}_j)}$$

$$\beta_{s_j} = \frac{(\mathbf{s}_j^T W \mathbf{z}) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(\mathbf{s}_j^T W \mathbf{s}_j) - (\mathbf{s}_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{s}_j)}$$

Lazy Key Switching

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

$$A = X^T W X \text{ (size } 4 \times 4) \rightarrow \text{adj}(A) = \left((-1)^{k+\ell} \cdot |A_{k\ell}| \right)_{1 \le k,\ell \le 4}$$

- $adj(A)_{11} = a_{22}a_{33}a_{44} a_{22}a_{34}a_{43} + a_{23}a_{34}a_{42} a_{23}a_{32}a_{44} + a_{24}a_{32}a_{43} a_{24}a_{33}a_{42}$
- $|A| = a_{11} \cdot \operatorname{adj}(A)_{11} + \dots + a_{14} \cdot \operatorname{adj}(A)_{14}$

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

$$A = X^T W X \text{ (size } 4 \times 4) \rightarrow \text{adj}(A) = \left((-1)^{k+\ell} \cdot |A_{k\ell}| \right)_{1 \le k,\ell \le 4}$$

- $adj(A)_{11} = a_{22}a_{33}a_{44} a_{22}a_{34}a_{43} + a_{23}a_{34}a_{42} a_{23}a_{32}a_{44} + a_{24}a_{32}a_{43} a_{24}a_{33}a_{42}$
- $|A| = a_{11} \cdot \operatorname{adj}(A)_{11} + \dots + a_{14} \cdot \operatorname{adj}(A)_{14}$

$$\beta_{s_j} = \frac{(s_j^T W \mathbf{z}) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W \mathbf{z})}{(s_j^T W s_j) - (s_j^T W X) \cdot (X^T W X)^{-1} \cdot (X^T W s_j)}$$

$$A = X^T W X \text{ (size } 4 \times 4) \rightarrow \text{adj}(A) = \left((-1)^{k+\ell} \cdot |A_{k\ell}| \right)_{1 \le k,\ell \le 4}$$

- $adj(A)_{11} = a_{22}a_{33}a_{44} a_{22}a_{34}a_{43} + a_{23}a_{34}a_{42} a_{23}a_{32}a_{44} + a_{24}a_{32}a_{43} a_{24}a_{33}a_{42}$
- $|A| = a_{11} \cdot \operatorname{adj}(A)_{11} + \dots + a_{14} \cdot \operatorname{adj}(A)_{14}$

Implementation Results

Intel Core i5 @ 3.8GHZ processor

Method	log M	log O h		$\sigma N \mid \log O$			Tim	ing		Memory	<i>p</i> -values
	log IV	$\log Q$	h	KeyGen	Enc	Eval	Dec	Encrypted DB	(FP + FN)		
Linear	13	245	130	0.12s	3.35s	1.61s	2.6ms	714MB	0.0059		
Logistic	15	1060	170	7.14s	6.59s	53.66s	18 ms	1.7GB	0.0052		

Linear Regression

- Much faster (1.6 seconds) but less accurate
- Depth 3 evaluation (vs 22 of Logistic Regression)

