
Semi-parallel GWAS using RNS-CKKS

Miran Kim⋆, Baiyu Li", Daniele Micciancio", Yongsoo Song"

⋆ University of Texas, Health Science Center at Houston

† University of California, San Diego

Oct. 15, 2018

Modifications of RNS-CKKS

q Base scheme: [CKKS]
§ Efficient for real number arithmetic

[CKKS] Homomorphic Encryption for Arithmetic of Approximate Numbers, Asiacrypt 2017

[RNS] A Full-RNS variant of Approximate Homomorphic Encryption, SAC 2018

Modifications of RNS-CKKS

q Base scheme: [CKKS]
§ Efficient for real number arithmetic

q RNS variant [RNS]
§ Residue Number System based on ! = #$#% …#' for distinct primes #(≈
= 2+

§ All computation are performed on Residue Number System representation

[CKKS] Homomorphic Encryption for Arithmetic of Approximate Numbers, Asiacrypt 2017

[RNS] A Full-RNS variant of Approximate Homomorphic Encryption, SAC 2018

Modifications of RNS-CKKS

q Base scheme: [CKKS]

§ Efficient for real number arithmetic

q RNS variant [RNS]

§ Residue Number System based on ! = #$#% …#' for distinct primes #(≈ # = 2+
§ All computation are performed on Residue Number System representation

q More optimizations (This work)

§ Decomposition based key-switching (vs modulus-raising)

§ Delay the key-switching & Compute on “Extended ctxt” (a.k.a. Lazy Key-Switching)
[CKKS] Homomorphic Encryption for Arithmetic of Approximate Numbers, Asiacrypt 2017

[RNS] A Full-RNS variant of Approximate Homomorphic Encryption, SAC 2018

Semi-parallel GWAS

q Given !", $", %"& ∈ ±1 ×ℝ,-.,
find /& = (/2, 345) ∈ ℝ ,-7 such that sign 1, $", %"& ⋅ / = !" for all =.

[Sikorska et al.] GWAS on your notebook, BMC bioinformatics 2013

Semi-parallel GWAS

q Given !", $", %"& ∈ ±1 ×ℝ,-.,
find /& = (/2, 345) ∈ ℝ ,-7 such that sign 1, $", %"& ⋅ / = !" for all =.

q Semi-parallel Logistic Regression [Sikorska et al.]

[Sikorska et al.] GWAS on your notebook, BMC bioinformatics 2013

Semi-parallel GWAS

q Given !", $", %"& ∈ ±1 ×ℝ,-.,

find /& = (/2, 345) ∈ ℝ
,-7 such that sign 1, $", %"& ⋅ / = !" for all =.

q Semi-parallel Logistic Regression [Sikorska et al.]

§ Step 1: Train a common (independent from =) model /2 minimizing

> /2 = ∑ log[1 + exp(−!" 1, $" ⋅ /2)]

[Sikorska et al.] GWAS on your notebook, BMC bioinformatics 2013

Semi-parallel GWAS

q Given !", $", %"& ∈ ±1 ×ℝ,-.,

find /& = (/2, 345) ∈ ℝ
,-7 such that sign 1, $", %"& ⋅ / = !" for all =.

q Semi-parallel Logistic Regression [Sikorska et al.]

§ Step 1: Train a common (independent from =) model /2 minimizing

> /2 = ∑ log[1 + exp(−!" 1, $" ⋅ /2)]

§ Step 2: From / = (/2, 0), for each 4& (1 ≤ = ≤ K), find 345 which minimizes

L> /& = ∑ log 1 + exp −!" 1, $", %"& ⋅ /& for some /& = ∗, 3N5 .

[Sikorska et al.] GWAS on your notebook, BMC bioinformatics 2013

Step 1: Common Logistic Regression

Train a common model !" minimizing # !" = ∑ log[1 + exp(− 1, 23 ⋅ !")]

[iDASH17] Logistic regression model training based on the approximate HE, BMC Med Genomics 2018.

Step 1: Common Logistic Regression

Train a common model !" minimizing # !" = ∑ log[1 + exp(− 1, 23 ⋅ !")]

q Gradient Decent method [iDASH17]

[iDASH17] Logistic regression model training based on the approximate HE, BMC Med Genomics 2018.

Gradient Descent

!",7

!",8 ≈ !"

Step 1: Common Logistic Regression

Train a common model !" minimizing # !" = ∑ log[1 + exp(− 1, 23 ⋅ !")]

q Gradient Decent method [iDASH17]

§ Evaluate the formula recursively:

!789 ← !7 + 9
; ⋅ ∑3<9

; =>(−(1, 23) ⋅ !7) ⋅ (1, 23)
§ Matrix encoding & accelerated GD

[iDASH17] Logistic regression model training based on the approximate HE, BMC Med Genomics 2018.

Gradient Descent

!",?

!",7 ≈ !"

Step 2: Individual (parallel) Logistic Regression

From ! = (!$, 0), find ()* of !+ = ∗, (-* minimizing

./ !+ = ∑ log 1 + exp −:; 1, <;, =;> ⋅ !+

Gradient Descent

!$,@

!$,A ≈ !$

Step 2: Individual (parallel) Logistic Regression

From ! = (!$, 0), find ()* of !+ = ∗, (-* minimizing

./ !+ = ∑ log 1 + exp −:; 1, <;, =;> ⋅ !+

q Newton's method (single iteration)

!+ ← ! − A!B./
CD ⋅ A!./ !

for the Hessian matrix A!B./
Gradient Descent

!$,E

!$,F ≈ !$

!+(-*
Newton's
method

Newton’s method

q Single iteration at a starting point ! = (!$, 0)

!(= ∗, *+, ← ! − /!
012

34
⋅ /!12 ! = 1678 16

34
⋅ 16789,

• :; = < =;
7!$: predicted probability by !$

• 8 = diag B4,… ,BD for B; = :; ⋅ 1 − :;

• 9 = =;
7!$ + B;

34 G; − :;
4H;HD

• 16 = 6, +I

Newton’s method

q Single iteration at a starting point ! = (!$, 0)

!(= ∗, *+, ← ! − /!
012

34
⋅ /!12 ! = 1678 16

34
⋅ 16789,

• :; = < =;
7!$: predicted probability by !$

• 8 = diag B4,… ,BD for B; = :; ⋅ 1 − :;

• 9 = =;
7!$ + B;

34 G; − :;
4H;HD

• 16 = 6, +I

*+,=
(+I

789) − (+I786) ⋅ 6786 34 ⋅ (6789)

(+I
78+I) − (+I786) ⋅ 6786 34 ⋅ (678+I)

Evaluation Strategy 1

!" ⋯ !$

⋮ ⋱ ⋮

!" ⋯ !$

!'(=
('+,-.) − ('+,-1) ⋅ 1,-1 34 ⋅ (1,-.)
('+,-'+) − ('+,-1) ⋅ 1,-1 34 ⋅ (1,-'+)

Evaluation Strategy 1

!" ⋯ !$

⋮ ⋱ ⋮

!" ⋯ !$

'()* ⋯ '()*

⋮ ⋱ ⋮

'+)* ⋯ '+)*

,(⋯ ,(

⋮ ⋱ ⋮

,+ ⋯ ,+

-(⋯ -(

⋮ ⋱ ⋮

-+ ⋯ -+

-. = ,. ⋅ (1 − ,.)

56(⋅)

!78=
(79):;) − (79):<) ⋅ <):< =(⋅ (<):;)
(79):79) − (79):<) ⋅ <):< =(⋅ (<):79)

Evaluation Strategy 1

!" ⋯ !$

⋮ ⋱ ⋮

!" ⋯ !$

'()* ⋯ '()*

⋮ ⋱ ⋮

'+)* ⋯ '+)*

,(⋯ ,(

⋮ ⋱ ⋮

,+ ⋯ ,+

-(.(⋯ -(.(

⋮ ⋱ ⋮

-+.+ ⋯ -+.+

-/ ⋅ ./ = 2/ − ,/ + ('/)*) ⋅ -/

-(⋯ -(

⋮ ⋱ ⋮

-+ ⋯ -+

-/ = ,/ ⋅ (1 − ,/)

89(⋅)

!:;=
(:<)=>) − (:<)=?) ⋅ ?)=? @(⋅ (?)=>)
(:<)=:<) − (:<)=?) ⋅ ?)=? @(⋅ (?)=:<)

Evaluation Strategy 2

!"#$% &'"'(

!&#
) %

⋮
!(#

=

,!-=
(!"#$%) − (!"#$1) ⋅ 1#$1 3& ⋅ (1#$%)
(!"#$!") − (!"#$1) ⋅ 1#$1 3& ⋅ (1#$!")

Evaluation Strategy 2

!"#$% &'"'(

!&#
) %

⋮
!(#

= = ,- ./0/ &'/'1

2!3=
(!"#$%) − (!"#$7) ⋅ 7#$7 9& ⋅ (7#$%)
(!"#$!") − (!"#$7) ⋅ 7#$7 9& ⋅ (7#$!")

Evaluation Strategy 2

!"#$% &'"'(

!&#
) %

⋮
!(#

= = ,- ./0/ &'/'1 =
⨀3

/4&

1

!/56%6

Lazy Key Switching

7!8=
(!"#$%) − (!"#$<) ⋅ <#$< >& ⋅ (<#$%)
(!"#$!") − (!"#$<) ⋅ <#$< >& ⋅ (<#$!")

! = #$%# (size 4×4) → adj ! = −1 -.ℓ ⋅ !-ℓ 12-,ℓ24
§ adj ! 11 = 566577544 − 566574547 + 567574546 − 567576544 + 564576547 − 564577546
§ ! = 511 ⋅ adj ! 11 + ⋯+ 514 ⋅ adj ! 14

Evaluation Strategy 3

:;<=
(;>$%?) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%?)
(;>$%;>) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%;>)

! = #$%# (size 4×4) → adj ! = −1 -.ℓ ⋅ !-ℓ 12-,ℓ24
§ adj ! 11 = 566577544 − 566574547 + 567574546 − 567576544 + 564576547 − 564577546
§ ! = 511 ⋅ adj ! 11 + ⋯+ 514 ⋅ adj ! 14

566 -566 567 -567 564 -564

577 574 574 -576 576 577

544 547 546 544 547 546

Mult

566577544 − 564 577546

Evaluation Strategy 3

:;<=
(;>$%?) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%?)
(;>$%;>) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%;>)

! = #$%# (size 4×4) → adj ! = −1 -.ℓ ⋅ !-ℓ 12-,ℓ24
§ adj ! 11 = 566577544 − 566574547 + 567574546 − 567576544 + 564576547 − 564577546
§ ! = 511 ⋅ adj ! 11 + ⋯+ 514 ⋅ adj ! 14

566 -566 567 -567 564 -564

577 574 574 -576 576 577

544 547 546 544 547 546

Mult

566577544 − 564 577546

Evaluation Strategy 3

:;<=
(;>$%?) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%?)
(;>$%;>) − (;>$%#) ⋅ #$%# A1 ⋅ (#$%;>)

Rot & Sum

adj ! 11

Implementation Results

Intel Core i5 @ 3.8GHZ processor

Linear Regression
§ Much faster (1.6 seconds) but less accurate

§ Depth 3 evaluation (vs 22 of Logistic Regression)

