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Modifications of RNS-CKKS

q Base scheme: [CKKS]

§ Efficient for real number arithmetic

q RNS variant [RNS]

§ Residue Number System based on ! = #$#% …#' for distinct primes #( ≈ # = 2+
§ All computation are performed on Residue Number System representation

q More optimizations (This work)

§ Decomposition based key-switching (vs modulus-raising)

§ Delay the key-switching & Compute on “Extended ctxt” (a.k.a. Lazy Key-Switching)
[CKKS] Homomorphic Encryption for Arithmetic of Approximate Numbers,  Asiacrypt 2017

[RNS] A Full-RNS variant of Approximate Homomorphic Encryption,  SAC 2018
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Semi-parallel GWAS

q Given !", $", %"& ∈ ±1 ×ℝ,-.,

find /& = (/2, 345) ∈ ℝ
,-7 such that sign 1, $", %"& ⋅ / = !" for all =.

q Semi-parallel Logistic Regression [Sikorska et al.]

§ Step 1:  Train a common (independent from =) model /2 minimizing  

> /2 = ∑ log[1 + exp(−!" 1, $" ⋅ /2)]

§ Step 2: From / = (/2, 0), for each 4& (1 ≤ = ≤ K), find 345 which minimizes

L> /& = ∑ log 1 + exp −!" 1, $", %"& ⋅ /& for some /& = ∗, 3N5 .

[Sikorska et al.] GWAS on your notebook,  BMC bioinformatics 2013



Step 1: Common Logistic Regression

Train a common model !" minimizing # !" = ∑ log[1 + exp(− 1, 23 ⋅ !")]

[iDASH17] Logistic regression model training based on the approximate HE, BMC Med Genomics 2018.
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Step 1: Common Logistic Regression

Train a common model !" minimizing # !" = ∑ log[1 + exp(− 1, 23 ⋅ !")]

q Gradient Decent method [iDASH17]

§ Evaluate the formula recursively:

!789 ← !7 + 9
; ⋅ ∑3<9

; =>(−( 1, 23) ⋅ !7) ⋅ (1, 23)
§ Matrix encoding & accelerated GD

[iDASH17] Logistic regression model training based on the approximate HE, BMC Med Genomics 2018.

Gradient Descent

!",?

!",7 ≈ !"



Step 2: Individual (parallel) Logistic Regression

From ! = (!$, 0), find ()* of !+ = ∗, (-* minimizing

./ !+ = ∑ log 1 + exp −:; 1, <;, =;> ⋅ !+

Gradient Descent

!$,@

!$,A ≈ !$



Step 2: Individual (parallel) Logistic Regression

From ! = (!$, 0), find ()* of !+ = ∗, (-* minimizing

./ !+ = ∑ log 1 + exp −:; 1, <;, =;> ⋅ !+

q Newton's method (single iteration)

!+ ← ! − A!B./
CD ⋅ A!./ !

for the Hessian matrix A!B./
Gradient Descent

!$,E

!$,F ≈ !$

!+(-*
Newton's
method



Newton’s method

q Single iteration at a starting point ! = (!$, 0)
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Newton’s method

q Single iteration at a starting point ! = (!$, 0)

!( = ∗, *+, ← ! − /!
012

34
⋅ /!12 ! = 1678 16

34
⋅ 16789,

• :; = < =;
7!$ :  predicted probability by !$

• 8 = diag B4,… ,BD for  B; = :; ⋅ 1 − :;

• 9 = =;
7!$ + B;

34 G; − :;
4H;HD

• 16 = 6, +I

*+,=
(+I

789) − (+I786) ⋅ 6786 34 ⋅ (6789)

(+I
78+I) − (+I786) ⋅ 6786 34 ⋅ (678+I)



Evaluation Strategy 1

!" ⋯ !$

⋮ ⋱ ⋮

!" ⋯ !$

!'(=
('+,-.) − ('+,-1) ⋅ 1,-1 34 ⋅ (1,-.)
('+,-'+) − ('+,-1) ⋅ 1,-1 34 ⋅ (1,-'+)
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Evaluation Strategy 2
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Evaluation Strategy 2

!"#$% &'"'(

!&#
) %

⋮
!(#

= = ,- ./0/ &'/'1 =
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/4&

1

!/56%6

Lazy Key Switching

7!8=
(!"#$%) − (!"#$<) ⋅ <#$< >& ⋅ (<#$%)
(!"#$!") − (!"#$<) ⋅ <#$< >& ⋅ (<#$!")
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Rot & Sum

adj ! 11



Implementation Results

Intel Core i5 @ 3.8GHZ processor

Linear Regression
§ Much faster (1.6 seconds) but less accurate

§ Depth 3 evaluation (vs 22 of Logistic Regression)




