
Testing for Genetic Diseases on Encrypted Genomes
Secure Searching of Biomarkers Using Hybrid GSW Encryption Scheme

Jung Hee Cheon & Miran Kim & Yongsoo Song
Department of Mathematical Sciences, Seoul National University
jhcheon@snu.ac.kr & alfks500@snu.ac.kr & lucius05@snu.ac.kr

Abstract
The rapid development of genome sequencing technology requires to keep genomic data secure even when

stored in the cloud and still used for research. The aim of this work is to create a homomorphic security system for
searching a set of biomarkers to encrypted genomes. We suggest an efficient method to securely search and extract
the information without complicated computation such as comparison. Our important feature is the encoding of
genomic database in the polynomial ring, which is easily annihilated by only one multiplication with the query
data. Thus the information of encrypted reference/alternate sequence is contained in the constant term of the output
polynomial only if their chromosomes and positions match each other.

Cyclotomic Ring
•R = Z[X ]/Φm(X) for an integer m (: power of two).
• n = φ(m) is the degree of Φm(X).
•Rq = R/qR is the residue ring modulo an integer q.

• For a base B and exponent k s.t. Bk ≥ q, the word decomposition and power of B of a polynomial
inRq is defined by

WDB(a) = (a0, . . . , ak−1) ∈ RkB s.t. a =

k−1∑
i=0

Bi · ai, PB(a) = (a,B · a, . . . , Bk−1 · a),

which satisfies 〈WDB(a),PB(a)〉 = a.

RLWE public key encryption
• Sample a small polynomial s and set the secret key sk = (1,−s).
• Public key pk is generated by sampling a random polynomial a from Rq, a small polynomial e,

and returning pk = (b, a) for b = −as + e.
•~c ← RLWE.Enc(m): Take a polynomial m in the plaintext space Rt as an input. Sample a small

polynomial v and small polynomials e1, e2, and return ~c ← v · pk + (qtm + e0, e1). Note that an
encryption ~c = (c0, c1) of m satisfies 〈~c, sk〉 = q

tm + e for some small polynomial e.

•A RLWE encryption of m = m0 + m1X + · · · + mn−1X
n−1 can be easily converted into a LWE

encryption of m0 of secret vector ~s.

GSW symmetric key encryption [GSW13, DM15]
•C ← GSW.Enc(m):

– Take m ∈ R as an input.
– Sample a vector of random polynomials ~a ∈ R2k

q and a vector of small polynomials ~e ∈ R2k.
– Output the 2k × 2 matrix (~c0,~c1) = (s · ~a + ~e,~a) + m ·G

for the Gadget matrix G = I2 ⊗ PB(1) =


1 0
0 1
... ...

Bk−1 0

0 Bk−1

 .
Note that an encryption C of m satisfies C · sk = m · PB(sk) + ~e.

Multiplication of GSW & RLWE ciphertexts [CGGI16]
• GSW ciphertexts act on RLWE ciphertexts.

Mult : {GSW ciphertexts} × {RLWE ciphertexts} → {RLWE ciphertexts}
C ∈ R2k×2

q , ~c = (c0, c1) ∈ R2
q 7→ WDB(~c) · C

• If C · sk = m′ · PB(sk) + ~e and 〈~c, sk〉 = q
tm + e, then their multiplication satisfies

〈~cmult, sk〉 = (WDB(~c) · C) · sk = WDB(~c) · (C · sk) =
q

t
mm′ + e∗

for e∗ = m′e + 〈WDB(~c), ~e〉.
•~cmult is a RLWE encryption of mm′ with the error e∗.

Encoding Algorithm for Genomic Data
Each variation of database consists of three genomic informations: Chromosome, position, and nu-
cleic acid sequence:

Chr[i] ∈ {1, 2, . . . , 22, X(= 23), Y (= 24)}, POS[i] ∈ Z, and SNPs[i] ∈ {A, T,G,C}∗,

and we use one-to-one data encoding functions:
• Encode (Chr[i],POS[i]) into di = Chr[i] + 24 · POS[i] ∈ Z232

• Encoding of nucleic acid sequence SNPs[i] 7→ αi:
– Each of SNP is encoded by “A 7→ 00, G 7→ 01, C 7→ 10, T 7→ 11”, pad ‘1’ at the end of the

string, and fill zeros.
– Missing (empty) genotype is encoded as the zero string.

Encryption of VCF Files & Query Data
•A VCF file is encoded into the set {(di, αi) : 1 ≤ i ≤ `}. Construct the polynomial

SNPs(X) =
∑
i

αiX
di,

and use the public-key RLWE encryption scheme. Store the ciphertext ~cSNPs.
•Use symmetric-key GSW scheme for encoded query (d, α). Encrypt the polynomial X−d =
−Xn−d and send the ciphertext CQ to the server.
•Goal: check if there is an index 1 ≤ j ≤ ` such that (d, α) = (dj, αj).

Query Computation: Searching and Extraction

•Given ~cSNPs← RLWE.Enc(
∑
iαiX

di) and CQ← GSW.Enc(X−d).

• Compute ~cres← Mult(CQ,~cREF), which is an RLWE encryptions of
∑
iαiX

di−d.

• Convert it into a LWE ciphertext, which is an encryption of αj if dj = d for some j; otherwise an
encryption of random value.

• Carry out the modulus-switching to reduce communication cost.

•Decrypt the LWE ciphertexts and compare with α.

Database

RLWE.Enc(
∑
αiX

di)

Query

GSW.Enc(X−d)

× RLWE.Enc(
∑
αiX

di−d)

conv

M.S.

Result

LWE.Enc(αk)

Decrypt
αk

Optimization Techniques

• Construction of a single polynomial yields huge ring dimension n > 231, so we take n = 216 and
divide di into two 16-bit integers di,1, di,2.

• The size of the encoded nucleic acid sequences αi is too large (e.g. 41 bits) to be encrypted in a
single ciphertext.

– Split αi into smaller integers to use smaller plaintext space t = 211 and modulus q = 232.
– The use of variable type ‘int32 t’ accelerates the speed of implementation and basic C++ std

libraries.

Experimental Results

Performance description in terms of complexity & storage with 80-bit security on a single Intel
Core i5 running at 2.9 GHz processor.

#(SNPs) Size
Complexity Storage

Query-enc DB-enc Eval Decrypt DB Result

5
10K

0.14s

0.11s 0.67s 0.15ms 1MB 0.25MB

100K 0.27s 1.64s 0.29ms 2.5MB 0.625MB

20
10K 0.45s 2.75s 0.41ms 4MB 1MB

100K 1.04s 6.88s 0.84ms 10MB 2.5MB

#(SNPs): maximal number of SNPs considered for comparison

Conclusions

In this work, we suggest an efficient method to securely search of biomarkers using hybrid GSW
homomorphic encryption scheme. We came up with a solution to the secure outsourcing matching
problem by using polynomial encoding and extraction of query SNP based on the multiplication of
a RLWE-GSW ciphertext and an ordinary RLWE ciphertext. Our solution shows the progress of
cryptographic techniques in terms of their capability to support real-world genome data analysis.

References

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. to be appeared in ASI-
ACRYPT, 2016.

[DM15] Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less
than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–640. Springer,
2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in
Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

Acknowledgements

The research was supported by IT R&D program of MSIP/KEIT [No. 0450-21060006].


