Introduction to HEAAN (aka CKKS)

Yongsoo Song, Microsoft Research

Lattices: From Theory to Practice Simons Workshop, April 30

Definition

- [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- HEAAN is NOT a homomorphic encryption scheme
 - $Dec(Enc(m)) \neq m$
 - $Dec(ct_1 * ct_2) \neq Dec(ct_1) * Dec(ct_2)$

Definition

- [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- HEAAN is an approximate homomorphic encryption scheme
 - $Dec(Enc(m)) \approx m$
 - $Dec(ct_1 * ct_2) \approx Dec(ct_1) * Dec(ct_2)$
 - Noise bounds are determined by the parameter set
- This talk:
 - Construction (Leveled & Bootstrapping)
 - Pros and cons
 - Implementation & optimization
 - Subsequent works

Motivation

Floating point representation

$$\pi \approx 314 * 10^{-2}$$

significand scaling factor (base^{exponent})

Approximate arithmetic

$$(314 * 10^{-2}) * (314 * 10^{-2}) = 98596 * 10^{-4} \approx 986 * 10^{-2}$$

- The **rounding-off** operation makes a trade-off between accuracy and efficiency
 - Not represented as a low-degree polynomial

Learning with Errors

- Homomorphic Encryption candidate
 - Dec: $\mathbb{Z}_q^{n+1} \to \mathbb{Z}_q$, $c \mapsto \langle c, s \rangle = m$
- LWE-based scheme

• Dec:
$$\mathbb{Z}_q^{n+1} \to \mathbb{Z}_q \to \mathbb{Z}_p$$

 $\boldsymbol{c} \mapsto \langle \boldsymbol{c}, \boldsymbol{s} \rangle = \frac{q}{p}m + e \mapsto m$

- Dec is approximately homomorphic
- Exact computation over a discrete space modulo p
- Main Idea:
 - Consider the LWE noise as a part of numerical error in approximate computation
 - Support homomorphic rounding-off

Algorithms in HEAAN

- n : Ring dimension (power of two)
- $K = \mathbb{Q}[X]/(X^n + 1)$, $R = \mathbb{Z}[X]/(X^n + 1)$, $R_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Homomorphic operations
 - Addition & Multiplication (relinearization)
 - Rescaling
 - Rotation
 - Complex conjugation

Encoding & Decoding

Canonical embedding

$$\sigma: K = \mathbb{Q}[X]/(X^n + 1) \to \mathbb{C}^n, \ \sigma(a) = \left(a(\zeta), a(\zeta^3), \dots, a(\zeta^{2n-1})\right) \text{ where } \zeta = \exp(\pi i/n).$$

$$\tau: K = \mathbb{Q}[X]/(X^n + 1) \to \mathbb{C}^{n/2}, \ \tau(a) = \left(a(\zeta), a(\zeta^5), \dots, a(\zeta^{2n-3})\right).$$

• The precision of encoding is determined by the scaling factor $\Delta > 0$.

$$\mathbb{C}^{n/2} \qquad \begin{array}{c} \text{encoding} = [\Delta \cdot \tau^{-1}(\cdot)] \\ \hline m = (m_0, m_1, \dots, m_{n/2-1}) \\ \text{Message vector} \end{array} \qquad \begin{array}{c} \Delta > 0 \\ \text{decoding} = \Delta^{-1} \cdot \tau(\cdot) \end{array} \qquad \begin{array}{c} R = \mathbb{Z}[X]/(X^n + 1) \\ \hline \mu(X) \\ \text{such that } \tau(\mu) \approx \Delta \cdot m \\ \hline \end{array}$$

Toy example: n = 4, $\Delta = 10^2$

$$\boldsymbol{m} = (1 + 4i, 5 - 2i) \quad \mapsto \quad 3 + \frac{1}{\sqrt{2}}X + X^2 + \frac{5}{\sqrt{2}}X^3 \quad \mapsto \quad \mu(X) = 300 + 71X + 100X^2 + 354X^3$$

$$\tau(\mu) = \left(\mu(\zeta), \mu(\zeta^5)\right) = (99.89.. + i * 400.52.., 500.11.. - i * 200.52..) \approx \Delta \cdot \boldsymbol{m}$$

Encrypt & Decrypt

- Enc: $\mu(X) \mapsto ct = (b + \mu, a) \in R_q^2$ for a random RLWE instance (b, a) s.t. b + as = e
 - Dec: $ct = (c_0, c_1) \mapsto c_0 + c_1 \cdot s \pmod{q}$
 - (Approx) Correctness: $Dec(Enc(\mu)) = \mu + e$ if $||\mu + e|| < q/2$
- Notation: $ct(S) = c_0 + c_1 \cdot S \in R_q[S]$
 - $Dec(ct) = ct(s) \pmod{q}$

Arithmetic Operations

Given ct_i such that $ct_i(s) \approx \mu_i \pmod{q}$ and $\tau(\mu_i) \approx \Delta_i \cdot \boldsymbol{m}_i$

- $ct_{add} = ct_1 + ct_2 \pmod{q}$
 - Input should have the same scale $\Delta = \Delta_i$ to get a meaningful result
- $ct_{mul} = ct_1 \cdot ct_2 \pmod{q}$ • The scaling factor is set to be $\Delta_{mul} = \Delta_1 \cdot \Delta_2$ so that $ct_{mul} \mapsto \mu_1 \cdot \mu_2 \mapsto m_1 \odot m_2$

•
$$ct_{mul} = c_0 + c_1 S + c_2 S^2$$
 is quadratic
Replace S^2 by relinearization key $rlk(S) = k_0 + k_1 \cdot S$ such that $rlk(s) \approx s^2$

Scaling factor increases rapidly during homomorphic evaluation

Rescaling

- Homomorphic 'rounding-off'
 - Usually performed after multiplication

- The underlying plaintext is (approximately) divided by Δ
 ct'(s) = |Δ⁻¹ · c₀] + |Δ⁻¹ · c₁] · s ≈ Δ⁻¹ · (c₀ + c₁ · s)
- Plaintexts μ, μ' are encodings of the same message with different scaling factors
 Δ⁻² · τ(μ) ≈ m ≈ Δ⁻¹ · τ(μ')

Example: $F(x) = x^4$

Ciphertext Modulus	Plaintext	Scaling Factor	Message
q	μ	Δ	m
q	μ^2	Δ^2	m^2
$q' = \Delta^{-1} \cdot q$	$\Delta^{-1}\cdot\mu^2$	Δ	m^2
q'	$\Delta^{-2}\cdot\mu^4$	Δ^2	m^4
$q^{\prime\prime} = \Delta^{-1} \cdot q^{\prime}$	$\Delta^{-3}\cdot\mu^4$	Δ	m^4

Leveled HE

- Ciphertext modulus $q = p_0 \cdot \Delta^L$
 - Base modulus $p_0 \ (\gg \Delta)$, $q_\ell = p_0 \cdot \Delta^\ell$ for $0 \le \ell \le L$
 - Ciphertext level is ℓ = Ciphertext modulus is q_{ℓ}
- Support a **fixed-point** style computation
- Other operations
 - Based on the evaluation of automorphism $X \mapsto X^k$ in $Gal(K/\mathbb{Q}) \approx \mathbb{Z}_{2n}^{\times} = \langle 5, -1 \rangle$

$$\tau\left(\mu(X^k)\right) = \left(\mu(\zeta^k), \mu(\zeta^{5k}), \dots, \mu(\zeta^{(2n-3)k})\right)$$

- If $c_0(X) + c_1(X) \cdot s(X) = \mu(X)$, then $c_0(X^k) + c_1(X^k) \cdot s(X^k) = \mu(X^k)$
- k = 5 : rotation on $\langle \zeta^5 \rangle = \{\zeta, \zeta^5, \dots, \zeta^{2n-3}\}$ (as well as plaintext slots)
- k = -1 : complex conjugate

From theory to practice

- First proof-of-concept implementation : the HEAAN library (Seoul National Univ.)
 - Modular q operation is expensive (NTL for high-precision arithmetic)
- [CHKKS18b] RNS-friendly parameter setting, inspired by [BEHZ16] Full RNS variant of FV
 - $q = p_0 \cdot p_1 p_2 \dots p_L$, for distinct primes p_1, \dots, p_L and use the CRT representation The chain of ciphertext moduli determines the functionality of rescaling
 - 'Approximate basis' : find prime integers such that $p_\ell \approx \Delta$
- More than 5 libraries which are much of a muchness from theoretic perspective
 - Different choices of gadget decomposition for key-switching (relinearization)
- Standardization in progress

	HEAAN	RNS-HEAAN	SEAL	Lattigo
Institute	SNU	SNU	Microsoft	EPFL
Decomposition	Trivial	Trivial	Prime	Hybrid
RNS friendly?	No	Yes	Yes	Yes

Two sides of HEAAN

- Best known solution for encrypted real number arithmetic
 - $\log q = \log p_0 + L \cdot \log \Delta$ grows linearly with the depth and precision
 - Wide real-world applications
- Evaluation of analytic functions
 - Multiplicative inverse, sigmoid, etc.

- × Difficult-to-learn, hard-to-optimize
 - Security, scaling factor, precision, depth, packing, data size, ...
 - Polynomial approximation of a target function
 - Huge performance gap between fully/poorly optimized implementation

precision, data range

Definition and necessity [CHKKS18a]

- Bootstrapping of HE
 - Given *ct* such that $Dec_{sk}(ct) = m$, let $F(x) = Dec_x(ct)$
 - $ct' \coloneqq F(\text{Enc(sk)}) = \text{Enc}(F(sk)) = \text{Enc}(\boldsymbol{m})$ refreshes the (noise) level
- Q1. What is bootstrapping of approximate HE?
 - $ct' \coloneqq F(\operatorname{Enc}(\operatorname{sk})) \approx \operatorname{Enc}(F(\operatorname{sk})) = \operatorname{Enc}(\boldsymbol{m})$
 - Adding a sufficiently small error is acceptable
- Q2. Why do we need approximate bootstrapping?
 - Numerically stable circuits
 - e.g. negative feedback in control systems, convergence property of ML training algorithms

[Cheon-Han-Kim-Kim-Song '18] Bootstrapping for approximate homomorphic encryption [Chen-Chillotti-Song '19] Improved bootstrapping for approximate homomorphic encryption [Han-Ki '20] Better bootstrapping for approximate homomorphic encryption

Main Idea

- Dec: $ct \mapsto t = c_0 + c_1 \cdot s \mapsto [t]_q = \mu$
 - $t = qI + \mu$ for some small ||I|| < K
- Step 1 : Raise the modulus up to $Q \gg q$
 - $Dec(ct) = [c_0 + c_1 \cdot s]_Q = t$
- Step 2: Homomorphically evaluate the reduction modulo *q* function

Step 2: Modular reduction

- $t \mapsto [t]_q$ is not continuous
 - Cannot be approximated by a polynomial
- Assume that $t = qI + \mu$ for some $|\mu| < B \ll q$
 - Restrict the domain of the function to $\bigcup_{|k| \le K} (qk B, qk + B)$
 - Precisely approximated by the sine function $[t]_q \approx \frac{q}{2\pi} \sin \theta$ for $\theta = 2\pi t/q$

Step 2: sine evaluation

- Naïve approach: Taylor expansion
 - Require a large degree
 - Numerically unstable power representation

Step 2: sine evaluation

- Naïve approach: Taylor expansion
 - Require a large degree
 - Numerically unstable power representation
- [CHKKS18a] Double-angle formula
 - $\exp(i\theta/2^r) = \cos(\theta/2^r) + \sin(\theta/2^r)$ for r > 0(Small degree approximation is available)
 - Repeat squaring r times to obtain $\exp(i\theta)$
 - Extract its imaginary part

Step 2: sine evaluation

- Naïve approach: Taylor expansion
 - Require a large degree
 - Numerically unstable power representation
- [CHKKS18a] Double-angle formula
 - $\exp(i\theta/2^r) = \cos(\theta/2^r) + \sin(\theta/2^r)$ for r > 0(Small degree approximation is available)
 - Repeat squaring r times to obtain $\exp(i\theta)$
 - Extract its imaginary part
- [CCS19] Chebyshev approximation method
 - Almost optimal depth consumption
 - Efficient & numerically stable evaluation algorithm

Pre- and post-processing

Step 1 : Raise the modulus up to $Q \gg q$, $Dec(ct) = [c_0 + c_1 \cdot s]_Q = t$

Step 1.5: Move the coefficients $t_i = qI_i + \mu_i$ into the plaintext slots

Step 2: Homomorphically evaluate $t = qI + \mu \mapsto [t]_q = \mu$

Step 2.5 : Bring the values μ_i back to the coefficients

- Step 1.5 and 2.5 are homomorphic evaluation of encoding/decoding function (τ and τ^{-1})
- [CHKKS18] General BSGS method for linear transformation
 - Optimal in terms of depth, but expensive
- [CCS19] FFT-style algorithm using the property of τ
 - Fine trade-off between complexity and depth (3~4 are enough in practice)

Conclusion

- Defined and designed approximate HE and its bootstrapping
 - Asymptotic/practical performance improvement
- Numerical analysis + cryptographic knowledge for optimization
 - Need more studies on efficient polynomial approximation and evaluation
 - Higher-level API to provide better usability for general engineers
- Open questions
 - Build cryptographic protocol on the top of HEAAN
 - Previous techniques (e.g. noise flooding, circuit privacy) for HE do not apply