Introduction to HEAAN (aka CKKS)

Yongsoo Song, Microsoft Research
Lattices: From Theory to Practice
Simons Workshop, April 30

Definition

- [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- HEAAN is NOT a homomorphic encryption scheme
- $\operatorname{Dec}(E n c(\boldsymbol{m})) \neq \boldsymbol{m}$
- $\operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{1} * \boldsymbol{c} \boldsymbol{t}_{2}\right) \neq \operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{1}\right) * \operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{2}\right)$

Definition

- [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- HEAAN is an approximate homomorphic encryption scheme
- $\operatorname{Dec}(E n c(\boldsymbol{m})) \approx \boldsymbol{m}$
- $\operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{1} * \boldsymbol{c} \boldsymbol{t}_{2}\right) \approx \operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{1}\right) * \operatorname{Dec}\left(\boldsymbol{c} \boldsymbol{t}_{2}\right)$
- Noise bounds are determined by the parameter set
- This talk:
- Construction (Leveled \& Bootstrapping)
- Pros and cons
- Implementation \& optimization

- Subsequent works

Motivation

- Floating point representation

$$
\pi \approx \underbrace{314}_{\text {significand }} * \underbrace{10^{-2}}_{\text {scaling factor (base }}
$$

- Approximate arithmetic

$$
\left(314 * 10^{-2}\right) *\left(314 * 10^{-2}\right)=98596 * 10^{-4} \approx 986 * 10^{-2}
$$

- The rounding-off operation makes a trade-off between accuracy and efficiency
- Not represented as a low-degree polynomial

Learning with Errors

- Homomorphic Encryption candidate
- Dec : $\mathbb{Z}_{q}^{n+1} \rightarrow \mathbb{Z}_{q}, \boldsymbol{c} \mapsto\langle\boldsymbol{c}, \boldsymbol{s}\rangle=m$
- LWE-based scheme
- Dec : $\mathbb{Z}_{q}^{n+1} \rightarrow \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{p}$

$$
\boldsymbol{c} \mapsto\langle\boldsymbol{c}, \boldsymbol{s}\rangle=\frac{q}{p} m+e \mapsto m
$$

- Dec is approximately homomorphic
- Exact computation over a discrete space modulo p
- Main Idea:
- Consider the LWE noise as a part of numerical error in approximate computation
- Support homomorphic rounding-off

Algorithms in HEAAN

- n : Ring dimension (power of two)
- $K=\mathbb{Q}[X] /\left(X^{n}+1\right), R=\mathbb{Z}[X] /\left(X^{n}+1\right), R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Homomorphic operations
- Addition \& Multiplication (relinearization)
- Rescaling
- Rotation
- Complex conjugation

Encoding \& Decoding

- Canonical embedding

$$
\begin{aligned}
& \sigma: K=\mathbb{Q}[X] /\left(X^{n}+1\right) \rightarrow \mathbb{C}^{n}, \sigma(a)=\left(a(\zeta), a\left(\zeta^{3}\right), \ldots, a\left(\zeta^{2 n-1}\right)\right) \text { where } \zeta=\exp (\pi i / n) \\
& \tau: K=\mathbb{Q}[X] /\left(X^{n}+1\right) \rightarrow \mathbb{C}^{n / 2}, \tau(a)=\left(a(\zeta), a\left(\zeta^{5}\right), \ldots, a\left(\zeta^{2 n-3}\right)\right)
\end{aligned}
$$

- The precision of encoding is determined by the scaling factor $\Delta>0$.

$$
\mathbb{C}^{n / 2}
$$

$$
\text { encoding }=\left[\Delta \cdot \tau^{-1}(\cdot)\right]
$$

$$
R=\mathbb{Z}[X] /\left(X^{n}+1\right)
$$

$$
\boldsymbol{m}=\left(m_{0}, m_{1}, \ldots, m_{n / 2-1}\right)
$$

Message vector

$\Delta>0$ Scaling factor

$$
\text { decoding }=\Delta^{-1} \cdot \tau(\cdot)
$$

$$
\mu(X) \quad \text { such that } \tau(\mu) \approx \Delta \cdot \boldsymbol{m}
$$

Plaintext
\# Toy example: $\quad n=4, \Delta=10^{2}$

$$
\begin{aligned}
& \boldsymbol{m}=(1+4 i, 5-2 i) \mapsto 3+\frac{1}{\sqrt{2}} X+X^{2}+\frac{5}{\sqrt{2}} X^{3} \mapsto \quad \mu(X)=300+71 X+100 X^{2}+354 X^{3} \\
& \tau(\mu)=\left(\mu(\zeta), \mu\left(\zeta^{5}\right)\right)=(99.89 . .+i * 400.52 . ., 500.11 . .-i * 200.52 . .) \approx \Delta \cdot \boldsymbol{m}
\end{aligned}
$$

Encrypt \& Decrypt

- Enc: $\mu(X) \mapsto c t=(b+\mu, a) \in R_{q}^{2}$ for a random RLWE instance ($\left.b, a\right)$ s.t. $b+a s=e$
- Dec: $c t=\left(c_{0}, c_{1}\right) \mapsto c_{0}+c_{1} \cdot s(\bmod q)$
- (Approx) Correctness: $\operatorname{Dec}(\operatorname{Enc}(\mu))=\mu+e$ if $\|\mu+e\|<q / 2$
- Notation: $\operatorname{ct}(S)=c_{0}+c_{1} \cdot S \in R_{q}[S]$
- $\operatorname{Dec}(c t)=c t(s)(\bmod q)$

Arithmetic Operations

Given $c t_{i}$ such that $c t_{i}(s) \approx \mu_{i}(\bmod q)$ and $\tau\left(\mu_{i}\right) \approx \Delta_{i} \cdot \boldsymbol{m}_{i}$

- $c t_{a d d}=c t_{1}+c t_{2}(\bmod q)$
- Input should have the same scale $\Delta=\Delta_{i}$ to get a meaningful result
- $c t_{m u l}=c t_{1} \cdot c t_{2}(\bmod q)$
- The scaling factor is set to be $\Delta_{m u l}=\Delta_{1} \cdot \Delta_{2}$ so that $c t_{m u l} \quad \mapsto \quad \mu_{1} \cdot \mu_{2} \quad \mapsto \quad \boldsymbol{m}_{1} \odot \boldsymbol{m}_{2}$
- $c t_{m u l}=c_{0}+c_{1} S+c_{2} S^{2}$ is quadratic

Replace S^{2} by relinearization key $\operatorname{rlk}(S)=k_{0}+k_{1} \cdot S$ such that $\operatorname{rlk}(\mathrm{s}) \approx s^{2}$

- Scaling factor increases rapidly during homomorphic evaluation

Rescaling

- Homomorphic 'rounding-off'
- Usually performed after multiplication

$$
q^{\prime}=q / \Delta
$$

- Given $c t=c_{0}+c_{1} S \in R_{q}[S]$ of scale Δ^{2},
compute $c t^{\prime}=\left\lfloor\Delta^{-1} \cdot c t\right\rceil \in R_{q^{\prime}}[S]$ for $q^{\prime}=q / \Delta$ and set its scale as Δ
- The underlying plaintext is (approximately) divided by Δ
- $c t^{\prime}(s)=\left\lfloor\Delta^{-1} \cdot c_{0}\right\rceil+\left\lfloor\Delta^{-1} \cdot c_{1}\right\rceil \cdot s \approx \Delta^{-1} \cdot\left(c_{0}+c_{1} \cdot s\right)$
- Plaintexts μ, μ^{\prime} are encodings of the same message with different scaling factors
- $\Delta^{-2} \cdot \tau(\mu) \approx \boldsymbol{m} \approx \Delta^{-1} \cdot \tau\left(\mu^{\prime}\right)$

Example: $\mathrm{F}(\mathrm{x})=\mathrm{x}^{4}$

Ciphertext Modulus	Plaintext	Scaling Factor	Message
q	μ	Δ	\boldsymbol{m}
q	μ^{2}	Δ^{2}	\boldsymbol{m}^{2}
$q^{\prime}=\Delta^{-1} \cdot q$	$\Delta^{-1} \cdot \mu^{2}$	Δ	\boldsymbol{m}^{2}
q^{\prime}	$\Delta^{-2} \cdot \mu^{4}$	Δ^{2}	\boldsymbol{m}^{4}
$q^{\prime \prime}=\Delta^{-1} \cdot q^{\prime}$	$\Delta^{-3} \cdot \mu^{4}$	Δ	\boldsymbol{m}^{4}

Leveled HE

- Ciphertext modulus $q=p_{0} \cdot \Delta^{L}$
- Base modulus $p_{0}(\gg \Delta), \quad q_{\ell}=p_{0} \cdot \Delta^{\ell}$ for $0 \leq \ell \leq L$
- Ciphertext level is $\ell=$ Ciphertext modulus is q_{ℓ}
- Support a fixed-point style computation
- Other operations
- Based on the evaluation of automorphism $X \mapsto X^{k}$ in $\operatorname{Gal}(K / \mathbb{Q}) \approx \mathbb{Z}_{2 n}^{\times}=\langle 5,-1\rangle$

$$
\tau\left(\mu\left(X^{k}\right)\right)=\left(\mu\left(\zeta^{k}\right), \mu\left(\zeta^{5 k}\right), \ldots, \mu\left(\zeta^{(2 n-3) k}\right)\right)
$$

- If $c_{0}(X)+c_{1}(X) \cdot s(X)=\mu(X)$, then $c_{0}\left(X^{k}\right)+c_{1}\left(X^{k}\right) \cdot s\left(X^{k}\right)=\mu\left(X^{k}\right)$
- $k=5$: rotation on $\left\langle\zeta^{5}\right\rangle=\left\{\zeta, \zeta^{5}, \ldots, \zeta^{2 n-3}\right\}$ (as well as plaintext slots)
- $k=-1$: complex conjugate

From theory to practice

- First proof-of-concept implementation : the HEAAN library (Seoul National Univ.)
- Modular q operation is expensive (NTL for high-precision arithmetic)
- [CHKKS18b] RNS-friendly parameter setting, inspired by [BEHZ16] Full RNS variant of FV
- $q=p_{0} \cdot p_{1} p_{2} \ldots p_{L}$, for distinct primes p_{1}, \ldots, p_{L} and use the CRT representation The chain of ciphertext moduli determines the functionality of rescaling
- 'Approximate basis' : find prime integers such that $p_{\ell} \approx \Delta$
- More than 5 libraries which are much of a muchness from theoretic perspective
- Different choices of gadget decomposition for key-switching (relinearization)
- Standardization in progress

	HEAAN	RNS-HEAAN	SEAL	Lattigo
Institute	SNU	SNU	Microsoft	EPFL
Decomposition	Trivial	Trivial	Prime	Hybrid
RNS friendly?	No	Yes	Yes	Yes

Two sides of HEAAN

- Best known solution for encrypted real number arithmetic
- $\log q=\log p_{0}+L \cdot \log \Delta$ grows linearly with the depth and precision
- Wide real-world applications
- Evaluation of analytic functions
- Multiplicative inverse, sigmoid, etc.
\times Difficult-to-learn, hard-to-optimize
- Security, scaling factor, precision, depth, packing, data size, ...
- Polynomial approximation of a target function
- Huge performance gap between
fully/poorly optimized implementation

Definition and necessity [CHKKS18a]

- Bootstrapping of HE
- Given $c t$ such that $\operatorname{Dec}_{s k}(c t)=\boldsymbol{m}$, let $F(x)=\operatorname{Dec}_{x}(c t)$
- $c t^{\prime}:=F(\operatorname{Enc}(\mathrm{sk}))=\operatorname{Enc}(F(\mathrm{sk}))=\operatorname{Enc}(\boldsymbol{m})$ refreshes the (noise) level
- Q1. What is bootstrapping of approximate HE?
- $c t^{\prime}:=F(\operatorname{Enc}(\mathrm{sk})) \approx \operatorname{Enc}(F(\mathrm{sk}))=\operatorname{Enc}(\boldsymbol{m})$
- Adding a sufficiently small error is acceptable
- Q2. Why do we need approximate bootstrapping?
- Numerically stable circuits
- e.g. negative feedback in control systems, convergence property of ML training algorithms

[^0]
Main Idea

- Dec: ct $\mapsto t=c_{0}+c_{1} \cdot s \mapsto[t]_{q}=\mu$
- $t=q I+\mu$ for some small $\|I\|<K$
- Step 1 : Raise the modulus up to $Q \gg q$
- $\operatorname{Dec}(c t)=\left[c_{0}+c_{1} \cdot s\right]_{Q}=t$
- Step 2: Homomorphically evaluate the reduction modulo q function

Step 2: Modular reduction

- $t \mapsto[t]_{q}$ is not continuous
- Cannot be approximated by a polynomial
- Assume that $t=q I+\mu$ for some $|\mu|<B \ll q$
- Restrict the domain of the function to $\bigcup_{|k| \leq K}(q k-B, q k+B)$
- Precisely approximated by the sine function $[t]_{q} \approx \frac{q}{2 \pi} \sin \theta$ for $\theta=2 \pi t / q$

Step 2: sine evaluation

- Naïve approach: Taylor expansion
- Require a large degree
- Numerically unstable power representation

Step 2: sine evaluation

- Naïve approach: Taylor expansion
- Require a large degree
- Numerically unstable power representation
- [CHKKS18a] Double-angle formula
- $\exp \left(i \theta / 2^{r}\right)=\cos \left(\theta / 2^{r}\right)+\sin \left(\theta / 2^{r}\right)$ for $r>0$ (Small degree approximation is available)
- Repeat squaring r times to obtain $\exp (i \theta)$
- Extract its imaginary part

Step 2: sine evaluation

- Naïve approach: Taylor expansion
- Require a large degree
- Numerically unstable power representation
- [CHKKS18a] Double-angle formula
- $\exp \left(i \theta / 2^{r}\right)=\cos \left(\theta / 2^{r}\right)+\sin \left(\theta / 2^{r}\right)$ for $r>0$ (Small degree approximation is available)
- Repeat squaring r times to obtain $\exp (i \theta)$
- Extract its imaginary part

- [CCS19] Chebyshev approximation method
- Almost optimal depth consumption
- Efficient \& numerically stable evaluation algorithm

Pre- and post-processing

Step 1 : Raise the modulus up to $Q \gg q, \quad \operatorname{Dec}(c t)=\left[c_{0}+c_{1} \cdot s\right]_{Q}=t$
Step 1.5: Move the coefficients $t_{i}=q I_{i}+\mu_{i}$ into the plaintext slots
Step 2: Homomorphically evaluate $t=q I+\mu \mapsto[t]_{q}=\mu$
Step 2.5 : Bring the values μ_{i} back to the coefficients

- Step 1.5 and 2.5 are homomorphic evaluation of encoding/decoding function (τ and τ^{-1})
- [CHKKS18] General BSGS method for linear transformation
- Optimal in terms of depth, but expensive
- [CCS19] FFT-style algorithm using the property of τ
- Fine trade-off between complexity and depth ($3^{\sim} 4$ are enough in practice)

Conclusion

- Defined and designed approximate HE and its bootstrapping
- Asymptotic/practical performance improvement
- Numerical analysis + cryptographic knowledge for optimization
- Need more studies on efficient polynomial approximation and evaluation
- Higher-level API to provide better usability for general engineers
- Open questions
- Build cryptographic protocol on the top of HEAAN
- Previous techniques (e.g. noise flooding, circuit privacy) for HE do not apply

[^0]: [Cheon-Han-Kim-Kim-Song '18] Bootstrapping for approximate homomorphic encryption
 [Chen-Chillotti-Song '19] Improved bootstrapping for approximate homomorphic encryption
 [Han-Ki '20] Better bootstrapping for approximate homomorphic encryption

