A Full RNS Variant of Approximate Homomorphic Encryption

Jung Hee Cheon, Kyoohyung Han, Andrey Kim (Seoul National University)

Miran Kim (UTHealth), Yongsoo Song (UC San Diego)

SAC 2018

Residue Number System (a.k.a. CRT) A Full RNS Variant of Approximate Homomorphic Encryption

Jung Hee Cheon, Kyoohyung Han, Andrey Kim (Seoul National University)

Miran Kim (UTHealth), Yongsoo Song (UC San Diego)

SAC 2018

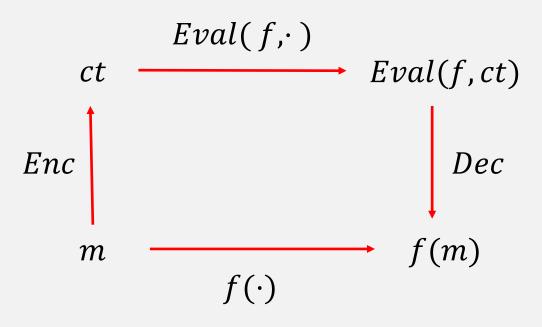
Background

Secure Computation

Differential Privacy

□ (Secure) Multi-Party Computation

- □ (Fully) Homomorphic Encryption
 - Semantic security.
 - Non-interactive.
 - Reusable.
 - Long-term storage, Unlimited sources.



Scheme	Word Encryption	Bit Encryption	Approximate Encryption
Scheme (Library)			
Plaintext Space			
Operation			

Scheme	Word Encryption	Bit Encryption	Approximate Encryption
Scheme (Library)	BGV (HElib) B/FV (SEAL, NFLlib)		
Plaintext Space	Finite field + Packing		
Operation	Addition, Multiplication		

Scheme	Word Encryption	Bit Encryption	Approximate Encryption
Scheme (Library)	BGV (HElib) B/FV (SEAL, NFLlib)	FHEVV, TFHE	
Plaintext Space	Finite field + Packing	Single Bit	
Operation	Addition, Multiplication	Binary Gate + Bootstrapping	

Scheme	Word Encryption	Bit Encryption	Approximate Encryption
Scheme (Library)	BGV (HElib) B/FV (SEAL, NFLlib)	FHEW, TFHE	HEAAN
Plaintext Space	Finite field + Packing	Single Bit	Real / Complex + Packing
Operation	Addition, Multiplication	Binary Gate + Bootstrapping	Addition, Multiplication, <mark>Rounding</mark>

Design

- Homomorphic Encryption for Arithmetic of Approximate Numbers [CKKS (AC'I7)]
- Bootstrapping [CHKKS (EC'18)]

Design

- Homomorphic Encryption for Arithmetic of Approximate Numbers [CKKS (AC'I7)]
- Bootstrapping [CHKKS (EC'18)]

Applications in Machine Learning

Design

- Homomorphic Encryption for Arithmetic of Approximate Numbers [CKKS (AC'I7)]
- Bootstrapping [CHKKS (EC'18)]
- Applications in Machine Learning
 - Training of Logistic Regression Model
 [KSW+ (JMI'18), KSK+ (iDASH'17, BMC'18), CKKS (IEEE Access'18)]

Design

- Homomorphic Encryption for Arithmetic of Approximate Numbers [CKKS (AC'I7)]
- Bootstrapping [CHKKS (EC'18)]
- Applications in Machine Learning
 - Training of Logistic Regression Model
 [KSW+ (JMI'18), KSK+ (iDASH'17, BMC'18), CKKS (IEEE Access'18)]
 - Matrix Computation & Evaluation of Neural Networks [JKLS (CCS'18)]

- Numerical Representation
 - $1.234 = 1234 \cdot 10^{-3}$.
 - Scaling factor $p = 10^3$.

- Numerical Representation
 - $\bullet 1.234 = 1234 \cdot 10^{-3}.$
 - Scaling factor $p = 10^3$.
- Fixed-Point Arithmetic
 - 1.234 × 5.678

- Numerical Representation
 - $\bullet 1.234 = 1234 \cdot 10^{-3}.$
 - Scaling factor $p = 10^3$.
- Fixed-Point Arithmetic
 - $1.234 \times 5.678 = (1234 \times 5678) \cdot 10^{-6}$

- Numerical Representation
 - $\bullet 1.234 = 1234 \cdot 10^{-3}.$
 - Scaling factor $p = 10^3$.
- Fixed-Point Arithmetic
 - $1.234 \times 5.678 = (1234 \times 5678) \cdot 10^{-6}$ = $7006652 \cdot 10^{-6}$

- Numerical Representation
 - $\bullet 1.234 = 1234 \cdot 10^{-3}.$
 - Scaling factor $p = 10^3$.
- Fixed-Point Arithmetic
 - $1.234 \times 5.678 = (1234 \times 5678) \cdot 10^{-6}$

 $= 7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3} = 7.007.$

- Numerical Representation
 - $\bullet 1.234 = 1234 \cdot 10^{-3}.$
 - Scaling factor $p = 10^3$.
- Fixed-Point Arithmetic
- $1.234 \times 5.678 = (1234 \times 5678) \cdot 10^{-6}$
 - $= 7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3} = 7.007.$
- Division by scaling factor *p* (a.k.a. Rounding operation).

- Approximate Encoding / Encryption
 - (Ring) LWE-based.

- Approximate Encoding / Encryption
 - (Ring) LWE-based.
 - $x \mapsto m = \lfloor p \cdot x \rfloor$. p: scaling factor. m: significant digits of x.

 $ct = Enc_{sk}(m) \implies \langle ct, sk \rangle \pmod{q_l} = m + e$

Approximate Encoding / Encryption

(Ring) LWE-based.

• $x \mapsto m = \lfloor p \cdot x \rfloor$. p: scaling factor. m: significant digits of x.

 $ct = Enc_{sk}(m) \implies \langle ct, sk \rangle \pmod{q_l} = m + e \approx p \cdot x.$

Approximate Encoding / Encryption

- (Ring) LWE-based.
- $x \mapsto m = \lfloor p \cdot x \rfloor$. p: scaling factor. m: significant digits of x.

 $ct = Enc_{sk}(m) \implies \langle ct, sk \rangle \pmod{q_l} = m + e \approx p \cdot x.$

Approximate Homomorphic Operations

• Mult: $(Enc(m_1), Enc(m_2)) \mapsto Enc(m \approx m_1m_2 \approx p^2 \cdot x_1x_2).$

Approximate Encoding / Encryption

- (Ring) LWE-based.
- $x \mapsto m = \lfloor p \cdot x \rfloor$. p: scaling factor. m: significant digits of x.

 $ct = Enc_{sk}(m) \implies \langle ct, sk \rangle \pmod{q_l} = m + e \approx p \cdot x.$

Approximate Homomorphic Operations

- Mult: $(Enc(m_1), Enc(m_2)) \mapsto Enc(m \approx m_1m_2 \approx p^2 \cdot x_1x_2).$
- Round: $Enc(m) \pmod{q_l} \mapsto Enc(m' \approx p^{-1} \cdot m) \pmod{q_{l-1}}$ for $p = q_l/q_{l-1}$.

Approximate Encoding / Encryption

- (Ring) LWE-based.
- $x \mapsto m = \lfloor p \cdot x \rfloor$. p: scaling factor. m: significant digits of x.

 $ct = Enc_{sk}(m) \implies \langle ct, sk \rangle \pmod{q_l} = m + e \approx p \cdot x.$

Approximate Homomorphic Operations

- Mult: $(Enc(m_1), Enc(m_2)) \mapsto Enc(m \approx m_1m_2 \approx p^2 \cdot x_1x_2).$
- Round: $Enc(m) \pmod{q_l} \mapsto Enc(m' \approx p^{-1} \cdot m) \pmod{q_{l-1}}$ for $p = q_l/q_{l-1}$.
- Leveled Structure : $(q_L = p^L) > (q_{L-1} = p^{L-1}) > \dots > (q_1 = p).$

Main Result

Ring structure $R_q = \mathbb{Z}_q[x]/(x^n + 1)$.

Expensive operation & High-precision library ($\log q = 250 \sim 800$).

Ring structure $R_q = \mathbb{Z}_q[x]/(x^n + 1)$.

Expensive operation & High-precision library ($\log q = 250 \sim 800$).

Residue Number System (RNS) : $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_L}$.

Ring structure $R_q = \mathbb{Z}_q[x]/(x^n + 1)$.

Expensive operation & High-precision library ($\log q = 250 \sim 800$).

Residue Number System (RNS) : $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_L}$.

Scheme	Word Encryption	Approximate Encryption
Representation	HElib (Double-CRT) [GHS12b]	
Homo. Operations	Full RNS B/FV Variants [BEHZ17, HPS18]	
Library	SEAL (v2.3)	

Ring structure $R_q = \mathbb{Z}_q[x]/(x^n + 1)$.

Expensive operation & High-precision library ($\log q = 250 \sim 800$).

Residue Number System (RNS) : $\mathbb{Z}_q \cong \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_L}$.

Scheme	Word Encryption	Approximate Encryption
Representation	HElib (Double-CRT) [GHS12b]	This Work
Homo. Operations	Full RNS B/FV Variants [BEHZ17, HPS18]	
Library	SEAL (v2.3)	RNS HEAAN

Rounding Operation

• $Enc(m) \pmod{q_l} \mapsto Enc(p_l^{-1} \cdot m) \pmod{q_{l-1}}$ for $p_l = q_l/q_{l-1}$.

Rounding Operation

• $Enc(m) \pmod{q_l} \mapsto Enc(p_l^{-1} \cdot m) \pmod{q_{l-1}}$ for $p_l = q_l/q_{l-1}$.

What if we don't use the same $p = p_l$ for all l?

Rounding Operation

• $Enc(m) \pmod{q_l} \mapsto Enc(p_l^{-1} \cdot m) \pmod{q_{l-1}}$ for $p_l = q_l/q_{l-1}$.

What if we don't use the same $p = p_l$ for all l? $q_L = p_1 p_2 \dots p_L$ for approximate basis $p_l \approx p$. $Enc(p_l^{-1} \cdot m) \approx Enc(p^{-1} \cdot m)$ (w/ approximation error)

Rounding Operation

• $Enc(m) \pmod{q_l} \mapsto Enc(p_l^{-1} \cdot m) \pmod{q_{l-1}}$ for $p_l = q_l/q_{l-1}$.

What if we don't use the same $p = p_l$ for all l? $q_L = p_1 p_2 \dots p_L$ for approximate basis $p_l \approx p$. $Enc(p_l^{-1} \cdot m) \approx Enc(p^{-1} \cdot m)$ (w/ approximation error)

$$R_{q_L} \cong R_{p_1} \times R_{p_2} \times \cdots \times R_{p_L}$$
 for $q_L = p_1 p_2 \dots p_L$.

- Polynomial Arithmetic
 - Number Theoretic Transformation (NTT): $R_{p_l} \rightarrow \mathbb{Z}_{p_l}^n$

Polynomial Arithmetic

- Number Theoretic Transformation (NTT): $R_{p_l} \rightarrow \mathbb{Z}_{p_l}^n$
- Should be a prime number with $p_l \equiv 1 \pmod{2n}$.

Polynomial Arithmetic

- Number Theoretic Transformation (NTT): $R_{p_l} \rightarrow \mathbb{Z}_{p_l}^n$
- Should be a prime number with $p_l \equiv 1 \pmod{2n}$.

Example
$$(p = 2^{55}, n = 2^{15})$$

 $p_1 = 8000000080001, p_2 = 8000000130001, p_3 = 7FFFFFFF90001, ...$

$$R_{p_1} \times R_{p_2} \times \cdots \times R_{p_L} \cong \mathbb{Z}_{p_1}^n \times \mathbb{Z}_{p_2}^n \times \ldots \times \mathbb{Z}_{p_L}^n.$$

- Non-Polynomial Algorithms
 - Key-switching process (e.g. Homomorphic multiplication)

Non-Polynomial Algorithms

- Key-switching process (e.g. Homomorphic multiplication)
- Mod Raising : $R_{q_l} \rightarrow R_{\Delta \cdot q_l}, \quad a \mapsto a.$
- Mod Reduction : $R_{\Delta \cdot q_l} \to R_{q_l}, \qquad b \mapsto \lfloor b / \Delta \rfloor = (b \lfloor b \rfloor_{\Delta}) / \Delta.$

Non-Polynomial Algorithms

- Key-switching process (e.g. Homomorphic multiplication)
- Mod Raising : $R_{q_l} \rightarrow R_{\Delta \cdot q_l}, \quad a \mapsto a.$
- Mod Reduction : $R_{\Delta \cdot q_l} \to R_{q_l}, \qquad b \mapsto \lfloor b / \Delta \rfloor = (b \lfloor b \rfloor_{\Delta}) / \Delta.$

•
$$\text{RNS}_{(p_1, p_2, \dots, p_l)}(a) = (a_i)_{i \in [l]}.$$

Non-Polynomial Algorithms

- Key-switching process (e.g. Homomorphic multiplication)
- Mod Raising : $R_{q_l} \rightarrow R_{\Delta \cdot q_l}, \quad a \mapsto a.$
- Mod Reduction : $R_{\Delta \cdot q_l} \rightarrow R_{q_l}$, $b \mapsto \lfloor b / \Delta \rfloor = (b \lfloor b \rfloor_{\Delta}) / \Delta$.

•
$$\text{RNS}_{(p_1, p_2, \dots, p_l)}(a) = (a_i)_{i \in [l]}.$$

Alternative algorithms without RNS conversions?

$$RNS_{p_i}^{-1}(a_i) \equiv \sum_i [a_i \cdot \hat{p_i}^{-1}]_{p_i} \cdot \hat{p_i} \pmod{q_l} \quad \text{for} \quad \hat{p_i} = q_l/p_i.$$
$$\sum_i [a_i \cdot \hat{p_i}^{-1}]_{p_i} \cdot \hat{p_i} = q_l \cdot t + a \quad \text{for a small } t.$$

$$\operatorname{RNS}_{p_i}^{-1}(a_i) \equiv \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{q_l} \quad \text{for} \quad \widehat{p_i} = q_l / p_i.$$
$$\sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} = q_l \cdot t + a \quad \text{for a small } t.$$

 $\Box \text{ Our Approx Mod Raising Algorithm (from <math>q_l$ to $\Delta \cdot q_l$) $R_{p_1} \times \cdots \times R_{p_l} \to R_{p_1} \times \cdots \times R_{p_l} \times R_{\Delta_1} \times \cdots \times R_{\Delta_k}$,

$$\operatorname{RNS}_{p_i}^{-1}(a_i) \equiv \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{q_l} \quad \text{for} \quad \widehat{p_i} = q_l / p_i.$$
$$\sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} = q_l \cdot t + a \quad \text{for a small } t.$$

 \Box Our Approx Mod Raising Algorithm (from q_l to $\Delta \cdot q_l$)

$$\begin{aligned} R_{p_1} \times \cdots \times R_{p_l} &\to R_{p_1} \times \cdots \times R_{p_l} \times R_{\Delta_1} \times \cdots \times R_{\Delta_k}, \\ (a_1, \dots, a_l) &\mapsto \left((a_1, \dots, a_l), (b_1, \dots, b_k) \right) \end{aligned}$$

$$b_j = \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{\Delta_j}.$$

$$\operatorname{RNS}_{p_i}^{-1}(a_i) \equiv \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{q_l} \quad \text{for} \quad \widehat{p_i} = q_l / p_i.$$
$$\sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} = q_l \cdot t + a \quad \text{for a small } t.$$

□ Our Approx Mod Raising Algorithm (from q_l to $\Delta \cdot q_l$) $R_{p_1} \times \cdots \times R_{p_l} \rightarrow R_{p_1} \times \cdots \times R_{p_l} \times R_{\Delta_1} \times \cdots \times R_{\Delta_k}$, $(a_1, \dots, a_l) \mapsto ((a_1, \dots, a_l), (b_1, \dots, b_k)) = \text{RNS}_{p_i, \Delta_j} (q_l \cdot t + a)$.

$$b_j = \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{\Delta_j}.$$

$$\operatorname{RNS}_{p_i}^{-1}(a_i) \equiv \sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} \pmod{q_l} \quad \text{for} \quad \widehat{p_i} = q_l / p_i.$$
$$\sum_i \left[a_i \cdot \widehat{p_i}^{-1} \right]_{p_i} \cdot \widehat{p_i} = q_l \cdot t + a \quad \text{for a small } t.$$

□ Our Approx Mod Raising Algorithm (from q_l to $\Delta \cdot q_l$) $R_{p_1} \times \cdots \times R_{p_l} \rightarrow R_{p_1} \times \cdots \times R_{p_l} \times R_{\Delta_1} \times \cdots \times R_{\Delta_k}$,

$$(a_1, \dots, a_l) \mapsto ((a_1, \dots, a_l), (b_1, \dots, b_k)) = \operatorname{RNS}_{p_i, \Delta_j}(q_l \cdot t + a).$$

$$b_j = \sum_i [a_i \cdot \widehat{p_i}^{-1}]_{p_i} \cdot \widehat{p_i} \pmod{\Delta_j}.$$

RNS Friendly Computation & Correctness of Homo Operations (w/ additional noise)

Idea I:Approximate Basis

- $q_L = p_1 p_2 \dots p_L$ with $p_L \approx p$ for RNS decomposition.
- Approximate error ($p_l^{-1}m \approx p^{-1}m$) of the Rounding algorithm.

Idea I:Approximate Basis

- $q_L = p_1 p_2 \dots p_L$ with $p_L \approx p$ for RNS decomposition.
- Approximate error ($p_l^{-1}m \approx p^{-1}m$) of the Rounding algorithm.

Idea 2: Full-RNS Variant

- Approximate modulus-switching algorithms $R_{q_l} \leftrightarrow R_{\Delta \cdot q_l}$.
- Additional noise.

Idea I:Approximate Basis

- $q_L = p_1 p_2 \dots p_L$ with $p_L \approx p$ for RNS decomposition.
- Approximate error ($p_l^{-1}m \approx p^{-1}m$) of the Rounding algorithm.

Idea 2: Full-RNS Variant

- Approximate modulus-switching algorithms $R_{q_l} \leftrightarrow R_{\Delta \cdot q_l}$.
- Additional noise.

Efficiency & Convenience of Implementation (GMP, NTL free)

Idea I:Approximate Basis

- $q_L = p_1 p_2 \dots p_L$ with $p_L \approx p$ for RNS decomposition.
- Approximate error ($p_l^{-1}m \approx p^{-1}m$) of the Rounding algorithm.

Idea 2: Full-RNS Variant

- Approximate modulus-switching algorithms $R_{q_l} \leftrightarrow R_{\Delta \cdot q_l}$.
- Additional noise.

Efficiency & Convenience of Implementation (GMP, NTL free) vs Precision loss of computation

HEAAN vs RNS HEAAN

Variant	L	N	$\log q$	$\lceil \log Q_L \rceil$	Enc	Dec	Add	Cmult	Mult&RS
					(ms)	(ms)	(ms)	(ms)	(ms)
	5	2^{15}	55	336	332	106	30	204	740
HEAAN	10	2^{15}		611	530	135	32	281	1,355
	15	2^{16}		886	$1,\!465$	344	70	762	4,169
HEAAN-RNS	5	2^{15}	55	336	31	4.6	2.9	25	85
	10	2^{15}		611	58	7.8	4.3	44	164
	15	2^{16}		886	177	10.0	15.5	125	563

- $8x \sim 12x$ speed up

HEAAN vs RNS HEAAN

Function N	N	$\log q$	$\log p$	Consumed	Input	Total	Amortized
Function	ĨV			levels	precision	time	time
x^{16}						0.31s	$0.07 \mathrm{ms}$
x^{-1}	2^{13}	155	30	4	14 bits	0.45s	0.11ms
$\exp(x)$						0.65s	$0.16\mathrm{ms}$
x^{1024}	2^{15}	620	56	10	36 bits	7.46s	$0.43 \mathrm{ms}$

HEAAN

- 14 bits precision

Function	Degree	N	$\log q$	$\lceil \log Q_L \rceil$	Total time	Amortized time
x^{-1}	15	2^{14}	55	281	$167 \mathrm{ms}$	$21 \mu s$
$\exp x$	7	2^{14}	55	281	164ms	$20\mu s$
Sigmoid	7	2^{14}	55	281	$161 \mathrm{ms}$	$19 \mu \mathrm{s}$

RNS HEAAN

^{- 32} bits precision

https://github.com/HanKyoohyung/HEAAN-dev

Questions?