Generailized DLP with Auxiliary Inputs (SAC 2013)

Jung Hee Cheon, Taechan Kim, and Yongsoo Song

Department of Mathematical Sciences and ISaC-RIM Seoul National University

August 15, 2013

Classical Hard Problems

G is a group of prime order p with a generator g
■ DLP : given $\left(g, g^{\alpha}\right)$, compute $\alpha \in \mathbb{F}_{p}$
■ CDHP: given $\left(g, g^{x}, g^{y}\right)$, compute $g^{x y}$

- DDHP: given $\left(g, g^{x}, g^{y}, g^{z}\right)$, decide if $g^{z}=g^{x y}$
- Variants of the DLP?
- Cryptographic schemes with additional properties
- Security proof without random oracles

■ Public Key Encryption, Digital Signature, Authentication, etc

Variants of the DLP

- DLPwAI: given $\left(g, g^{\alpha}, \ldots, g^{\alpha^{d}}\right)$, compute $\alpha \in \mathbb{F}_{p}$

■ GDLPwAI: given $\left(g, g^{\alpha^{e_{1}}}, \cdots, g^{\alpha^{e_{d}}}\right)$, compute $\alpha \in \mathbb{F}_{p}$

- Applications
- Short Group Signatures[BBS04]
- Identity-based Encryptions[BB04e]
- Public Key Broadcast Encryption[BGW05]
- $\left(g_{1}, g_{1}^{\alpha}, \cdots, g_{1}^{\alpha^{d}}\right)$ can be obtained from g, g^{α} and a d-multilinear map $e: G \times G \times \cdots \times G \rightarrow G_{T}$

Previous Works for the DLPwAI

Previous Work: $p \pm 1$ Cases

- $p-1$ has a small divisor d [Brown-Gallant'05], [C'06]
- Parameter: $g, g^{\alpha}, g^{\alpha^{d}}$
- Apply BSGS twice
- Total complexity : $\log p \cdot O\left(\sqrt{\frac{p-1}{d}}+\sqrt{d}\right)$
- $p+1$ has a small divisor d [C'06]
- Parameter: $g, g^{\alpha}, \cdots, g^{\alpha^{d}}$
- Embed \mathbb{F}_{p} into an order- $(p+1)$ subgroup of $\mathbb{F}_{p^{2}}$
- Total complexity $: \log p \cdot O\left(\sqrt{\frac{p+1}{d}}+d\right)$
[C'06] Cheon,J.H.: Security Analysis of the Strong Diffie-Hellman Problem. EUROCRYPT 2006.

Previous Work: Embedding to $\mathbb{F}_{p^{n}}$

- d is a divisor of $\Phi_{n}(p)$ [Satoh'09]
- Embed \mathbb{F}_{p} into $G L_{n}\left(\mathbb{F}_{p}\right)$
- $n=1$ (or $n=2$) case falls into the $p-1$ (or $p+1$) case of the previous algorithm
- The complexity is greater than $p^{1 / 2}$ when $n \geq 3$
$\square d$ is a divisor of $p^{n}-1$ [C.-Kim-Lee'12]
- $D<p$ is an divisor of $p^{n}-1$, and $E=\left(p^{n}-1\right) / D$
- Embedding $\mathbb{F}_{p} \rightarrow \mathbb{F}_{p^{n}}, \quad x \mapsto\left(x+\zeta_{\tau}\right)^{\left(p^{n}-1\right) / D}$
- Find r such that $S_{p}(r E) \leq d$
- Total complexity : $O\left(\sqrt{D}+S_{p}(r E)\right)$
[C.-Kim-Lee'12] Minkyu Kim, Jung Hee Cheon and In-Sok Lee: Analysis on a Generalized Algorithm for the Strong
Discrete Logarithm Problem with Auxiliary Inputs, 2012.

Previous Work: Polynomials with Small Value Sets

■ $f(x)=f_{0}+\cdots+f_{d} x^{d}$ has a small image size $|\operatorname{Im}(f)|=q$
■ Multipoint evaluation $\left\{f\left(r_{i} \alpha\right)\right\},\left\{f\left(s_{j}\right)\right\}$ for random r_{i}, s_{j} 's using exponent FFT

- Find a collision $f\left(r_{i} \alpha\right)=f\left(s_{j}\right)$ and solve this equation
- However, $|\operatorname{Im}(f)| \approx p / e$ in general
- $f(x)=x^{d}, d \mid p-1$ ($p-1$ case)
- The Dickson polynomial $D_{d}(x, a)(p+1$ case $)$
[C.-Kim'12] Taechan Kim and Jung Hee Cheon: A New Approach to Discrete Logarithm Problem with Auxiliary
Inputs, IACR Cryptology ePrint Archive, 2012.

New Approach using Group Actions

Motivation

- Consider $f(x)=x+x^{k}+\cdots+x^{k^{d-1}} \in \mathbb{F}_{p}[x]$, where $k \in \mathbb{Z}_{p-1}$ and $k^{d}=1$
- $f(x)=f\left(x^{k}\right)=\cdots=f\left(x^{k^{d-1}}\right)$, and f has the small value set
- The degree of $f(x)=x+x^{k}+\cdots+x^{k^{d-1}} \in \mathbb{F}_{p}[x]$ is high, the FFT cannot be applied
- Considering $\zeta \in \mathbb{F}_{p}$ s.t. $\zeta^{k}=\zeta$, then $f\left(\zeta^{i} x\right)=\zeta^{i} f(x)$ for any i and $x \in \mathbb{F}_{p}$
■ Solve the DLP with inputs $g, g^{\alpha}, \cdots, g^{\alpha^{k^{d-1}}}$

Generalizations

■ GDLPwAI: given $\left(g, g^{\alpha^{e_{1}}}, \cdots, g^{\alpha^{e}{ }_{d}}\right)$, compute $\alpha \in \mathbb{F}_{p}$

- Replace $\left\{1, k, \cdots k^{d-1}\right\}$ by any multiplicative subgroup K of $\mathbb{Z}_{p-1}^{\times}$of order d
- $f(x)=\sum_{k \in K} x^{k}$ is d-to- 1 since $f(x)=f\left(x^{k}\right)$ for any $k \in K$
- $f\left(\zeta^{i} x\right)=\zeta^{i} f(x)$ if $\zeta^{k}=\zeta$ for any $k \in K$

Main Idea

■ Our algorithm solves the GDLPwAI when $K=\left\{e_{1}, \cdots e_{d}\right\}$ is a multiplicative subgroup of $\mathbb{Z}_{p-1}^{\times}$

- Parameter: g and $\left\{\left(k, g^{\alpha^{k}}\right): k \in K\right\}$
- Define the group action $\theta: K \times \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*},(k, x) \mapsto x^{k}$
- $f(x)=\sum_{k \in K} x^{k}$ has the same value on one orbit x^{K}
- $f(\zeta x)=\zeta f(x)$ if ζ is a fixed point of the group action θ
- $g^{f(\alpha)}=\prod_{k \in K} g^{\alpha^{k}}$ can be computed

Fixed Points

- The elements of multiplicative subgroup K seem like a part of an arithmetic sequence starting from 1
- $\lambda=\operatorname{gcd}(K-1)=\operatorname{gcd}\{k-1: k \in K\}$ is a divisor of $p-1$
- Every element of K is of the form $1+\lambda m$ for some $m \in \mathbb{Z}_{p-1}$

■ The set of fixed points of the group action is

- $\left\{x \in \mathbb{Z}_{p}^{*}: x^{k}=x\right\}=\left\{x \in \mathbb{Z}_{p}^{*}: x^{\lambda}=1\right\}=\langle\zeta\rangle$
- ξ is a primitive root of \mathbb{Z}_{p} and $\zeta:=\xi^{(p-1) / \lambda}$

■ Example: $p=29, K=\{1,5,9,13,17,25\} \leq \mathbb{Z}_{28}^{\times}$

- $\lambda=\operatorname{gcd}(K-1)=4$
- $\xi=2$ is a primitive element of \mathbb{Z}_{29}, and $\zeta=\xi^{(p-1) / \lambda}=12$
- $\langle 12\rangle=\{1,12,17,28\} \leq \mathbb{Z}_{29}^{*}$ are the fixed points
- We get $f\left(\zeta^{t} x^{k}\right)=\zeta^{t} f(x)$ for any $t \in[0, \lambda), k \in K$
- λd-number of elements of \mathbb{Z}_{p}^{*} are obtained from $f(x)$

Figure: d-to-1 Evaluation

Algorithm

■ For random $\beta \in \mathbb{Z}_{p}^{*}$, compute $f(\beta)=\sum_{k \in K} \beta^{k}$ and $g^{f(\beta)}$ in $O(d)$. The probability that $\zeta^{t} \alpha^{k}=\beta$ for some $t \in[0, \lambda), k \in K$ is equal to $\lambda d /(p-1)$

- Using the BSGS method, find $t \in[0, \lambda)$ in $O(\sqrt{\lambda})$ from the relation $g^{\zeta^{t} f(\alpha)}=g^{f(\beta)}$
- Determine $k \in K$ by comparing $g^{\zeta^{-t} \beta}$ with $g^{\alpha^{k}}$, s for $k \in K$
- The expectation number of repetition is $(p-1) / \lambda d$

Main Theorem

Theorem

Let K be a multiplicative subgroup of $\mathbb{Z}_{p-1}^{\times}$with $\lambda=\operatorname{gcd}(K-1)$.
Then, one can solve the GDLPwAI in $O\left(\frac{p}{\lambda d}(\sqrt{\lambda}+d)\right)$
exponentiations in \mathbb{Z}_{p} if $\left|\alpha^{K}\right|=d$ and $\sum_{k \in K} \alpha^{k} \neq 0$.

- In many cases, $d=O\left(\frac{p}{\lambda}\right)$ and the complexity is $O\left(\sqrt{\lambda}+\frac{p}{\lambda}\right)$. It can be lowered down to $O\left(p^{1 / 3}\right)$ when $\lambda \approx p^{2 / 3}$.
- Additional conditions $\left|\alpha^{K}\right|=|K|$ and $\sum_{k \in K} \alpha^{k} \neq 0$ are satisfied with a high probability.

Summary

- The polynomial $f(x)=\sum_{k \in K} x^{k}$ has the small image set but high degree
- The multipoint evaluation of f can be done with the equation $f\left(\zeta^{i} x^{k}\right)=\zeta^{i} f(x)$
- The total complexity $O\left(\sqrt{\lambda}+\frac{p}{\lambda}\right)$ can be lowered down to $O\left(p^{1 / 3}\right)$ when $\lambda \approx p^{2 / 3}$

Open Problems and Further Works

- The FFT cannot be applied since the degree of f is high. Can you calculate many $f(\beta)=\sum_{k \in K} \beta^{k}$'s efficiently?
- Is it possible to convert the parameter $\left(g^{\alpha}, \cdots, g^{\alpha^{d}}\right)$ of the DLPwAl to ($g^{\alpha^{e_{1}}}, \cdots, g^{\alpha^{e_{d}}}$) of the GDLPwAI?

围 Boneh，D．and Boyen，X．：Short Signatures Without Random Oracles．Advances in Cryptology－EUROCRYPT 2004，pp． 56－73．
䍰 Cheon，J．H．：Security Analysis of the Strong Diffie－Hellman Problem．In：Vaude－nay，S．（ed．）EUROCRYPT 2006．LNCS， vol．4004，pp．1－11．Springer，Heidelberg（2006）

䍰 Cheon，J．H．：Discrete Logarithm Problems with Auxiliary Inputs．Journal of Cryptology 23（3），pp．457－476．（2010）
围 Satoh，T．：On Generalization of Cheon＇s Algorithm． http：／／eprint．iacr．org／2009／058．pdf（2009）
Tim，T．and Cheon，J．H．：A New Approach to Discrete Logarithm Problem with Auxiliary Inputs．IACR Cryptology ePrint Acheive（2012）．http：／／eprint．iacr．org／2012／609

