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Background



Primitives for Secure Computation

q Differential Privacy

§ Limited Applications (e.g. count, average). Privacy budget. 

q (Secure) Multi-Party Computation
§ Lower complexity, but higher communication costs.

e.g. 40GB for GWAS analysis for 100K individuals [Nature Biotechnology'17]

§ Protocol has many rounds.

q (Fully) Homomorphic Encryption
§ Higher complexity, but less communication costs.

§ One round protocol.



HE vs. MPC

Homomorphic Encryption Multi-Party Computation

Re-usability

High (non-interactive)
One-time encryption 

No further interaction from 
the data owners

Single-use encryption
Not good for long-term storage

Interaction between parties each time

Sources Unlimited Limited participants 
(due to complexity constraints)

Speed Slow in computation
(but can speed-up using SIMD)

Slow in communication 
(due to large circuit to be exchanged)

HE is ideal for long term storage and non-interactive computation 



Summary of Progresses

q 2009-10: Plausibility
§ [GH'11] A single bit operation takes 30 minutes.

q 2011-12: Real Circuits
§ [GHS'12] A 30,000-gate in 36 hours

q 2013-16: Usability
§ HElib [HS'14]: IBM's open-source implementation of the BGV scheme

The same 30,000-gate in 4-15 minutes

q 2017-Today: Practical uses for real-world applications
§ HE Standardization workshops

§ iDASH Privacy & Security competition (2013~)



Secure Health Data Analysis

q Predicting Heart Attack
§ ~0.2 seconds.

q Sequence matching
§ ~27 seconds, Edit distance of length 8.

§ ~180 seconds, Approximate edit distance of length 10K (iDASH'15)

q Searching of Biomarkers
§ ~0.2 seconds, 100K database (iDASH'16)

qTraining Logistic Regression Model
§ ~7 minutes, 18 features * 1600 samples (iDASH'17)



Homomorphic Matrix Operation

q HElib (Crypto'14)
§ (Matrix) * (Vector)

q CryptoNets (ICML'16)
§ (Plain matrix) * (Element-wisely encrypted vector)

q GAZELLE (Usenix Security'18)
§ (Column-wisely encrypted matrix) * (Plain vector)

q Homomorphic Evaluation of (Deep) Neural Networks
§ [BMMP17] Evaluation of discretized DNN, [CWM+17] Classification on DNN.

§ Evaluation of Plain model on Encrypted data.
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§ (Plain matrix) * (Element-wisely encrypted vector)
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§ (Column-wisely encrypted matrix) * (Plain vector)

q Homomorphic Evaluation of (Deep) Neural Networks
§ [BMMP17] Evaluation of discretized DNN, [CWM+17] Classification on DNN.

§ Evaluation of Plain model on Encrypted data.

O(d) complexity for (matrix*vector).
→ O(d2)  for (matrix*matrix): not optimal.



Motivation

q Scenarios (Data/Model owner; Cloud server; Individuals)
I. Data owner trains a model and makes it available on the cloud.

II. Model provider encrypts a trained model & uploads it to the cloud to 
make predictions on encrypted inputs from individuals.

III. Cloud trains a model on encrypted data and uses it to make predictions 
on new encrypted inputs.

q Our Work: Homomorphic Operations between Encrypted Matrices



Main Idea



Functionality of HE Schemes

q Packing Method
§ Vector encryption & Parallel operations.

§ Enc(x1,..., xn) * Enc(y1,..., yn) = Enc(x1 * y1,..., xn * yn)
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q Packing Method
§ Vector encryption & Parallel operations.

§ Enc(x1,..., xn) * Enc(y1,..., yn) = Enc(x1 * y1,..., xn * yn)

q Scalar Multiplication
§ (a1,..,an) * Enc(x1,.., xn) = Enc(a1x1,.., anxn)

q Rotation
§ Enc(x1,..., xn) → Enc(x2,..., xn, x1)

q Composition of basic operations
§ Permutation, linear transformation (Expensive)

How to Represent Matrix Arithmetic
Using HE-Friendly Operations?



Matrix Encoding

q Identify n=d2 dimensional vector to d*d matrix
§ Addition is easy.
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§ Row or Column shifting permutations are cheap.

(Depth 1, Complexity O(1))
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Matrix Multiplication
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Generation of Ai

A0 Generation : O(d) homomorphic operations.
Ai = ColumnShifting(A0, i) : O(1) for each.
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Generation of Bi

B0 Generation : O(d) homomorphic operations.
Bi = RowShifting(B0, i) : O(1) for each.
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Summary

A, B : d * d matrices

AB = A0 ◉ B0 + A1 ◉ B1 + ... + Ad-1 ◉ Bd-1

Generation of A0, B0 : General permutation - O(d).

Generation of Ai, Bi 's: Column/Row shifting from A0, B0 - O(d).

Element-wise product and summation: O(d).

Total complexity: O(d) homomorphic operations (optimal?).

Depth: 2 (scalar mult) + 1 (homo mult).



Other Operations

q Matrix Transposition
§ Complexity O(d0.5) + Depth 1.

q Parallelization
§ When the number of plaintext slots > d2.

§ Encrypt several matrices in a single ciphertext.

q Multiplication between Non-square Matrices



Implementation



Experimental Results

Based on the HEAAN library for fixed-point operation (n = 213).
All numbers have 24-bit precision.



Evaluation of Neural Networks

1 Convolution layer + 2 Fully connected layers.

Parallel evaluation on 64 images.



Comparison?

Plain model (previous work) vs. Encrypted model (ours)



Questions?
Thanks for listening


