Homomorphic Matrix Computation & Application to Neural Networks

Xiaoqian Jiang, Miran Kim (University of Texas, Health Science Center at Houston)

Kristin Lauter (Microsoft Research), Yongsoo Song (University of California, San Diego)

Background

Primitives for Secure Computation

Differential Privacy

- Limited Applications (e.g. count, average). Privacy budget.
- □ (Secure) Multi-Party Computation
 - Lower complexity, but higher communication costs.
 - e.g. 40GB for GWAS analysis for 100K individuals [Nature Biotechnology'17]
 - Protocol has many rounds.
- □ (Fully) Homomorphic Encryption
 - Higher complexity, but less communication costs.
 - One round protocol.

HE vs. MPC

	Homomorphic Encryption	Multi-Party Computation			
Re-usability	High (non-interactive) One-time encryption No further interaction from the data owners	Single-use encryption Not good for long-term storage Interaction between parties each time			
Sources	Unlimited	Limited participants (due to complexity constraints)			
Speed	Slow in computation (but can speed-up using SIMD)	Slow in communication (due to large circuit to be exchanged)			

HE is ideal for long term storage and non-interactive computation

Summary of Progresses

- 2009-10: Plausibility
 - [GH'II] A single bit operation takes 30 minutes.
- 2011-12: Real Circuits
 - [GHS'12] A 30,000-gate in 36 hours
- **2013-16**: Usability
 - HElib [HS'14]: IBM's open-source implementation of the BGV scheme The same 30,000-gate in 4-15 minutes
- 2017-Today: Practical uses for real-world applications
 - HE Standardization workshops
 - iDASH Privacy & Security competition (2013~)

Secure Health Data Analysis

- Predicting Heart Attack
 - ~0.2 seconds.
- Sequence matching
 - ~27 seconds, Edit distance of length 8.
 - ~180 seconds, Approximate edit distance of length 10K (iDASH'15)
- Searching of Biomarkers
 - ~0.2 seconds, I00K database (iDASH'I6)
- Training Logistic Regression Model
 - ~7 minutes, 18 features * 1600 samples (iDASH'17)

Homomorphic Matrix Operation

- HElib (Crypto'14)
 - (Matrix) * (Vector)
- CryptoNets (ICML'16)
 - (Plain matrix) * (Element-wisely encrypted vector)
- GAZELLE (Usenix Security'18)
 - (Column-wisely encrypted matrix) * (Plain vector)
- Homomorphic Evaluation of (Deep) Neural Networks
 - **[BMMP17]** Evaluation of discretized DNN, **[CWM+17]** Classification on DNN.
 - Evaluation of Plain model on Encrypted data.

Homomorphic Matrix Operation

- HElib (Crypto'14)
 - (Matrix) * (Vector)
- CryptoNets (ICML'16)

O(d) complexity for (matrix*vector). \rightarrow O(d²) for (matrix*matrix): not optimal.

- (Plain matrix) * (Element-wisely encrypted vector)
- GAZELLE (Usenix Security'18)
 - (Column-wisely encrypted matrix) * (Plain vector)
- Homomorphic Evaluation of (Deep) Neural Networks
 - **[BMMP17]** Evaluation of discretized DNN, **[CWM+17]** Classification on DNN.
 - Evaluation of Plain model on Encrypted data.

Motivation

Scenarios (Data/Model owner; Cloud server; Individuals)

- I. Data owner trains a model and makes it available on the cloud.
- II. Model provider encrypts a trained model & uploads it to the cloud to make predictions on encrypted inputs from individuals.
- III. Cloud trains a model on encrypted data and uses it to make predictions on new encrypted inputs.

Our Work: Homomorphic Operations between Encrypted Matrices

Main Idea

Functionality of HE Schemes

Packing Method

- Vector encryption & Parallel operations.
- $Enc(x_1,...,x_n) * Enc(y_1,...,y_n) = Enc(x_1 * y_1,...,x_n * y_n)$

Functionality of HE Schemes

Packing Method

- Vector encryption & Parallel operations.
- $Enc(x_1,...,x_n) * Enc(y_1,...,y_n) = Enc(x_1 * y_1,...,x_n * y_n)$

Scalar Multiplication

•
$$(a_1,...,a_n) * Enc(x_1,...,x_n) = Enc(a_1x_1,...,a_nx_n)$$

Rotation

• $Enc(x_1,...,x_n) \rightarrow Enc(x_2,...,x_n,x_1)$

Functionality of HE Schemes

Packing Method

- Vector encryption & Parallel operations.
- $Enc(x_1,...,x_n) * Enc(y_1,...,y_n) = Enc(x_1 * y_1,...,x_n * y_n)$

Scalar Multiplication

•
$$(a_1,...,a_n) * Enc(x_1,...,x_n) = Enc(a_1x_1,...,a_nx_n)$$

Rotation

- $\operatorname{Enc}(\mathbf{x}_1,...,\mathbf{x}_n) \to \operatorname{Enc}(\mathbf{x}_2,...,\mathbf{x}_n,\mathbf{x}_1)$
- Composition of basic operations
 - Permutation, linear transformation (Expensive)

How to Represent Matrix Arithmetic Using HE-Friendly Operations?

Matrix Encoding

□ Identify $n=d^2$ dimensional vector to d^*d matrix

Addition is easy.

Matrix Encoding

- □ Identify $n=d^2$ dimensional vector to d^*d matrix
 - Addition is easy.
 - Row or Column shifting permutations are cheap.
 (Depth I, Complexity O(I))

Matrix Encoding

- □ Identify $n=d^2$ dimensional vector to d^*d matrix
 - Addition is easy.
 - Row or Column shifting permutations are cheap.
 (Depth I, Complexity O(I))

Matrix Multiplication

С

f

i

$$AB = A_0 \textcircled{O} B_0 + A_1 \textcircled{O} B_1 + A_2 \textcircled{O} B_2$$

• : Element-wise Multiplication

Matrix Mult = Generation of Ai, Bi & d-homomorphic add/mult.

Matrix Multiplication

С

f

i

• : Element-wise Multiplication

Matrix Mult = Generation of Ai, Bi & d-homomorphic add/mult.

b

е

h

Matrix Multiplication

$$AB = A_0 \textcircled{O} B_0 + A_1 \textcircled{O} B_1 + A_2 \textcircled{O} B_2$$

• : Element-wise Multiplication

Matrix Mult = Generation of A_i , B_i & d-homomorphic add/mult.

Generation of A_i

 A_0 Generation : O(d) homomorphic operations. $A_i = ColumnShifting(A_0, i) : O(1)$ for each.

Generation of B_i

 B_0 Generation : O(d) homomorphic operations. $B_i = RowShifting(B_0, i) : O(I)$ for each.

Summary

A, B : d * d matrices

$$AB = A_0 \textcircled{O} B_0 + A_1 \textcircled{O} B_1 + \dots + A_{d-1} \textcircled{O} B_{d-1}$$

Generation of A_0 , B_0 : General permutation - O(d). Generation of A_i , B_i 's: Column/Row shifting from A_0 , B_0 - O(d). Element-wise product and summation: O(d).

Total complexity: O(d) homomorphic operations (optimal?). Depth: 2 (scalar mult) + 1 (homo mult).

Other Operations

- Matrix Transposition
 - Complexity O(d^{0.5}) + Depth I.

- Parallelization
 - When the number of plaintext slots $> d^2$.
 - Encrypt several matrices in a single ciphertext.

Multiplication between Non-square Matrices

Implementation

Experimental Results

Dim	Throughput	Message	Expansion	Encoding+	Decoding+	Relative time per matrix			
		size	rate	Encryption	Decryption	HE-MatAdd	HE-MatMult	HE-MatTrans	
	1	$0.47~\mathrm{KB}$	3670	34 ms	$9 \mathrm{ms}$	$0.62 \mathrm{~ms}$	$779 \mathrm{\ ms}$	$363 \mathrm{~ms}$	
4	16	$0.75~\mathrm{KB}$	229	41 ms	$12 \mathrm{~ms}$	$0.05 \mathrm{ms}$	$47 \mathrm{ms}$	$18 \mathrm{ms}$	
	256	12.0 KB	14.3	$95 \mathrm{ms}$	$81 \mathrm{ms}$	$0.03 \mathrm{ms}$	$3 \mathrm{ms}$	$1 \mathrm{ms}$	
16	1	$0.75~\mathrm{KB}$	229	33 ms	$13 \mathrm{ms}$	$0.62 \mathrm{ms}$	$2501~\mathrm{ms}$	$847 \mathrm{\ ms}$	
	4	3.0 KB	57.3	48 ms	$27 \mathrm{\ ms}$	0.19 ms	$649 \mathrm{~ms}$	211 ms	
	16	12.0 KB	14.3	97 ms	$78 \mathrm{\ ms}$	0.04 ms	$162 \mathrm{~ms}$	$49 \mathrm{ms}$	
64	1	12.0 KB	14.3	108 ms	$76 \mathrm{\ ms}$	$0.62 \mathrm{~ms}$	$9208 \mathrm{\ ms}$	$2557~\mathrm{ms}$	

Based on the HEAAN library for fixed-point operation ($n = 2^{13}$). All numbers have 24-bit precision.

Evaluation of Neural Networks

	Stage	Latency (s)	Relative time per image (ms)		
Data owner	Encoding + Encryption	1.56	24.42		
Model provider	Encoding + Encryption	12.33 -			
	Convolution	5.68	88.75		
	1 st square	0.10	1.51		
Claud	FC-1	20.79	324.85		
Cloud	2 nd square	0.06	0.96		
	FC-2	1.97	30.70		
	Total	28.59	446.77		
Authority	Decoding + Decryption	0.07	1.14		

I Convolution layer + 2 Fully connected layers.

Parallel evaluation on 64 images.

Comparison?

Framework	Method	Runtime (s)				Communication (MB)			
		Offline	Online 7	Total	Amortized	Offline	Online	Total	Per
									instance
CryptoNets	HE	-	-	570	0.07	-	-	595.5	0.07
MiniONN	HE, MPC	0.88	0.40	1.28	1.28	3.6	44	47.6	47.6
GAZELLE	HE, MPC	0	0.03	0.03	0.03	0	0.5	0.5	0.5
E2DM	HE	-		28.59	0.45	-	-	17.48	0.27

Plain model (previous work) vs. Encrypted model (ours)

Questions? Thanks for listening