Homomorphic Matrix Computation \& Application to Neural Networks

Xiaoqian Jiang, Miran Kim (University of Texas, Health Science Center at Houston)
Kristin Lauter (Microsoft Research), Yongsoo Song (University of California, San Diego)

Background

Primitives for Secure Computation

\square Differential Privacy

- Limited Applications (e.g. count, average). Privacy budget.
\square (Secure) Multi-Party Computation
- Lower complexity, but higher communication costs.
e.g. 40GB for GWAS analysis for IOOK individuals [Nature Biotechnology' I7]
- Protocol has many rounds.
\square (Fully) Homomorphic Encryption
- Higher complexity, but less communication costs.
- One round protocol.

HE vs. MPC

	Homomorphic Encryption	Multi-Party Computation
Re-usability	High (non-interactive) One-time encryption No further interaction from the data owners	Not good for long-term storage Interaction between parties each time
Sources	Unlimited	Limited participants (due to complexity constraints)
Speed	Slow in computation (but can speed-up using SIMD)	(due to large comircuit to be exchanged)

HE is ideal for long term storage and non-interactive computation

Summary of Progresses

\square 2009-I 0: Plausibility

- [GH'II] A single bit operation takes 30 minutes.
\square 201I-I2: Real Circuits
- [GHS' I2] A 30,000-gate in 36 hours
\square 2013-16: Usability
- HElib [HS' I4]: IBM's open-source implementation of the BGV scheme The same 30,000 -gate in $4-15$ minutes
\square 20I7-Today: Practical uses for real-world applications
- HE Standardization workshops
- iDASH Privacy \& Security competition (2013~)

Secure Health Data Analysis

\square Predicting Heart Attack

- ~0.2 seconds.
\square Sequence matching
- ~27 seconds, Edit distance of length 8.
- ~ 180 seconds, Approximate edit distance of length IOK (iDASH'I5)
\square Searching of Biomarkers
- ~0.2 seconds, IOOK database (iDASH'I6)
\square Training Logistic Regression Model
" ~ 7 minutes, 18 features * 1600 samples (iDASH' 17)

Homomorphic Matrix Operation

\square HElib (Crypto' I4)

- (Matrix) * (Vector)
\square CryptoNets (ICML'I6)
- (Plain matrix) * (Element-wisely encrypted vector)
\square GAZELLE (Usenix Security'I8)
- (Column-wisely encrypted matrix) * (Plain vector)
\square Homomorphic Evaluation of (Deep) Neural Networks
- [BMMPI7] Evaluation of discretized DNN, [CWM+I7] Classification on DNN.
- Evaluation of Plain model on Encrypted data.

Homomorphic Matrix Operation

\square HElib (Crypto' I4)

- (Matrix) * (Vector)

O(d) complexity for (matrix*vector).
$\rightarrow \mathrm{O}\left(\mathrm{d}^{2}\right)$ for (matrix*matrix): not optimal.
\square CryptoNets (ICML'I6)

- (Plain matrix) * (Element-wisely encrypted vector)
\square GAZELLE (Usenix Security'I8)
" (Column-wisely encrypted matrix) * (Plain vector)
\square Homomorphic Evaluation of (Deep) Neural Networks
- [BMMPI7] Evaluation of discretized DNN, [CWM+I7] Classification on DNN.
- Evaluation of Plain model on Encrypted data.

Motivation

\square Scenarios (Data/Model owner; Cloud server; Individuals)
I. Data owner trains a model and makes it available on the cloud.
II. Model provider encrypts a trained model \& uploads it to the cloud to make predictions on encrypted inputs from individuals.
III. Cloud trains a model on encrypted data and uses it to make predictions on new encrypted inputs.
\square Our Work: Homomorphic Operations between Encrypted Matrices

Main Idea

Functionality of HE Schemes
Packing Method

- Vector encryption \& Parallel operations.
- $\operatorname{Enc}\left(x_{1}, \ldots, x_{n}\right) * \operatorname{Enc}\left(y_{1}, \ldots, y_{n}\right)=\operatorname{Enc}\left(x_{1} * y_{1}, \ldots, x_{n} * y_{n}\right)$

Functionality of HE Schemes
Packing Method

- Vector encryption \& Parallel operations.
- $\operatorname{Enc}\left(x_{1}, \ldots, x_{n}\right) * \operatorname{Enc}\left(y_{1}, \ldots, y_{n}\right)=\operatorname{Enc}\left(x_{1} * y_{1}, \ldots, x_{n} * y_{n}\right)$Scalar Multiplication
- $\left(a_{1}, . ., a_{n}\right) * \operatorname{Enc}\left(x_{1}, . ., x_{n}\right)=\operatorname{Enc}\left(a_{1} x_{1}, . ., a_{n} x_{n}\right)$Rotation
- $\operatorname{Enc}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{Enc}\left(x_{2}, \ldots, x_{n}, x_{1}\right)$

Functionality of HE Schemes

\square Packing Method

- Vector encryption \& Parallel operations.
- $\operatorname{Enc}\left(x_{1}, \ldots, x_{n}\right) * \operatorname{Enc}\left(y_{1}, \ldots, y_{n}\right)=\operatorname{Enc}\left(x_{1} * y_{1}, \ldots, x_{n} * y_{n}\right)$
\square Scalar Multiplication
- $\left(a_{1}, \ldots, a_{n}\right) * \operatorname{Enc}\left(x_{1}, . ., x_{n}\right)=\operatorname{Enc}\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$
\square Rotation
- Enc $\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{Enc}\left(x_{2}, \ldots, x_{n}, x_{1}\right)$
\square Composition of basic operations

How to Represent Matrix Arithmetic Using HE-Friendly Operations?

- Permutation, linear transformation (Expensive)

Matrix Encoding

\square Identify $\mathrm{n}=\mathrm{d}^{2}$ dimensional vector to $\mathrm{d}^{*} \mathrm{~d}$ matrix

- Addition is easy.

1
2
3
4
5
6
7
8
9

Matrix Encoding

\square Identify $\mathrm{n}=\mathrm{d}^{2}$ dimensional vector to $\mathrm{d}^{*} \mathrm{~d}$ matrix

- Addition is easy.
- Row or Column shifting permutations are cheap.
(Depth I, Complexity O(I))

1	2	3
4	5	6
7	8	9

4	5	6
7	8	9
1	2	3

Matrix Encoding

\square Identify $\mathrm{n}=\mathrm{d}^{2}$ dimensional vector to $\mathrm{d}^{*} \mathrm{~d}$ matrix

- Addition is easy.
- Row or Column shifting permutations are cheap.
(Depth I, Complexity O(I))

1	2	3
4	5	6
7	8	9

2	3	1
5	6	4
8	9	7

Matrix Multiplication

$A=$| l | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |$\quad, B=$| a | b | c |
| :--- | :--- | :--- |
| d | e | f |
| g | h | i |

$A B=A_{0} \bigcirc B_{0}+A_{1} \bigcirc B_{1}+A_{2} \bigcirc B_{2}$
© : Element-wise Multiplication

1	2	3
5	6	4
9	7	8

a	e	i
d	h	c
g	b	f

2	3	1
6	4	5
7	8	9

d	h	c
g	b	f
a	e	i

$+$| 3 | 1 | 2 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 8 | 9 | 7 |

Matrix Mult $=$ Generation of $\mathrm{Ai}, \mathrm{Bi} \& \mathrm{~d}$-homomorphic add/mult.

Matrix Multiplication

$A B=A_{0} \bigcirc B_{0}+A_{1} \bigcirc B_{1}+A_{2} \bigcirc B_{2}$
© : Element-wise Multiplication

1	2	3
5	6	4
9	7	8

a	e	i
d	h	c
g	b	f

2	3	1
6	4	5
7	8	9

d	h	c
g	b	f
a	e	i

$+$| 3 | 1 | 2 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 8 | 9 | 7 |

Matrix Mult $=$ Generation of $\mathrm{Ai}, \mathrm{Bi} \& \mathrm{~d}$-homomorphic add/mult.

Matrix Multiplication

$A=$| l | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |$\quad, B=$| a | b | c |
| :--- | :--- | :--- |
| d | e | f |
| g | h | i |

$A B=A_{0} \bigcirc B_{0}+A_{1} \bigcirc B_{1}+A_{2} \bigcirc B_{2}$
© : Element-wise Multiplication

1	2	3
5	6	4
9	7	8

a	e	i
d	h	c
g	b	f

2	3	1
6	4	5
7	8	9

d	h	c
g	b	f
a	e	i

3	1	2
4	5	6
8	9	7

- | g | b | f |
| :--- | :--- | :--- |
| a | e | i |
| d | h | c |

Matrix Mult $=$ Generation of A_{i}, B_{i} \& d-homomorphic add $/$ mult.

Generation of A_{i}

A_{0} Generation: O(d) homomorphic operations. $A_{i}=$ ColumnShifting $\left(A_{0}, i\right): O(I)$ for each.

Generation of B_{i}

$B=$| a | b | c |
| :--- | :--- | :--- |
| d | e | f |
| g | h | i |

$B_{0}=$| a | e | i |
| :--- | :--- | :--- |
| d | h | c |
| g | b | f |

$B_{I}=$| d | h | c |
| :--- | :--- | :--- |
| g | b | f |
| a | e | i |

B_{0} Generation: $\mathrm{O}(\mathrm{d})$ homomorphic operations.
$B_{i}=$ RowShifting $\left(B_{0}, i\right): O(I)$ for each.

Summary

$A, B: d^{*} d$ matrices
$A B=A_{0} \bigcirc B_{0}+A_{1} \bigcirc B_{1}+\ldots+A_{d-1} \bigcirc B_{d-1}$

Generation of $\mathrm{A}_{0}, \mathrm{~B}_{0}$: General permutation - $\mathrm{O}(\mathrm{d})$.
Generation of A_{i}, B_{i} 's: Column/Row shifting from $A_{0}, B_{0}-O(d)$. Element-wise product and summation: O (d).

Total complexity: O(d) homomorphic operations (optimal?).
Depth: 2 (scalar mult) + I (homo mult).

Other Operations

\square Matrix Transposition

- Complexity O(d $\mathrm{d}^{0.5}$) + Depth I.
\square Parallelization
- When the number of plaintext slots $>\mathrm{d}^{2}$.
- Encrypt several matrices in a single ciphertext.
\square Multiplication between Non-square Matrices

Implementation

Experimental Results

Dim	Throughput	Message size	Expansion rate	Encoding+ Encryption	Decoding+ Decryption	Relative time per matrix		
	1	0.47 KB	3670	34 ms	9 ms	0.62 ms	779 ms	363 ms
4	16	0.75 KB	229	41 ms	12 ms	0.05 ms	47 ms	18 ms
	256	12.0 KB	14.3	95 ms	81 ms	0.03 ms	3 ms	1 ms
	1	0.75 KB	229	33 ms	13 ms	0.62 ms	2501 ms	847 ms
16	4	3.0 KB	57.3	48 ms	27 ms	0.19 ms	649 ms	211 ms
	16	12.0 KB	14.3	97 ms	78 ms	0.04 ms	162 ms	49 ms
64	1	12.0 KB	14.3	108 ms	76 ms	0.62 ms	9208 ms	2557 ms

Based on the HEAAN library for fixed-point operation $\left(\mathrm{n}=2^{13}\right)$. All numbers have 24-bit precision.

Evaluation of Neural Networks

	Stage	Latency (s)	Relative time per image (ms)
	Encoding + Encryption	1.56	24.42
	Encoding + Encryption	12.33	-
	Convolution	5.68	88.75
	$1^{\text {st }}$ square	0.10	1.51
	FC-1	20.79	324.85
	$2^{\text {nd }}$ square	0.06	0.96
	FC-2	1.97	30.70
	Total	$\mathbf{2 8 . 5 9}$	$\mathbf{4 4 6 . 7 7}$
Authority	Decoding + Decryption	0.07	1.14

I Convolution layer +2 Fully connected layers.

Parallel evaluation on 64 images.

Comparison?

Framework	Method	Runtime (s)				Communication (MB)			
		Offline	Online	Total	Amortized	Offline	Online	Total	Per instance
CryptoNets		-	-	570	0.07	-	-	595.5	0.07
MiniONN		0.88	0.40	1.28	1.28	3.6	44	47.6	47.6
GAZELLE	HE, MPC	0	0.03	0.03	0.03	0	0.5	0.5	0.5
E2DM	HE	-		28.59	0.45	-	-	17.48	0.27

Plain model (previous work) vs. Encrypted model (ours)

Questions?

Thanks for listening

