
Homomorphic Matrix Computation
& Application to Neural Networks

Xiaoqian Jiang, Miran Kim (University of Texas, Health Science Center at Houston)

Kristin Lauter (Microsoft Research), Yongsoo Song (University of California, San Diego)

Background

Primitives for Secure Computation

q Differential Privacy

§ Limited Applications (e.g. count, average). Privacy budget.

q (Secure) Multi-Party Computation
§ Lower complexity, but higher communication costs.

e.g. 40GB for GWAS analysis for 100K individuals [Nature Biotechnology'17]

§ Protocol has many rounds.

q (Fully) Homomorphic Encryption
§ Higher complexity, but less communication costs.

§ One round protocol.

HE vs. MPC

Homomorphic Encryption Multi-Party Computation

Re-usability

High (non-interactive)
One-time encryption

No further interaction from
the data owners

Single-use encryption
Not good for long-term storage

Interaction between parties each time

Sources Unlimited Limited participants
(due to complexity constraints)

Speed Slow in computation
(but can speed-up using SIMD)

Slow in communication
(due to large circuit to be exchanged)

HE is ideal for long term storage and non-interactive computation

Summary of Progresses

q 2009-10: Plausibility
§ [GH'11] A single bit operation takes 30 minutes.

q 2011-12: Real Circuits
§ [GHS'12] A 30,000-gate in 36 hours

q 2013-16: Usability
§ HElib [HS'14]: IBM's open-source implementation of the BGV scheme

The same 30,000-gate in 4-15 minutes

q 2017-Today: Practical uses for real-world applications
§ HE Standardization workshops

§ iDASH Privacy & Security competition (2013~)

Secure Health Data Analysis

q Predicting Heart Attack
§ ~0.2 seconds.

q Sequence matching
§ ~27 seconds, Edit distance of length 8.

§ ~180 seconds, Approximate edit distance of length 10K (iDASH'15)

q Searching of Biomarkers
§ ~0.2 seconds, 100K database (iDASH'16)

qTraining Logistic Regression Model
§ ~7 minutes, 18 features * 1600 samples (iDASH'17)

Homomorphic Matrix Operation

q HElib (Crypto'14)
§ (Matrix) * (Vector)

q CryptoNets (ICML'16)
§ (Plain matrix) * (Element-wisely encrypted vector)

q GAZELLE (Usenix Security'18)
§ (Column-wisely encrypted matrix) * (Plain vector)

q Homomorphic Evaluation of (Deep) Neural Networks
§ [BMMP17] Evaluation of discretized DNN, [CWM+17] Classification on DNN.

§ Evaluation of Plain model on Encrypted data.

Homomorphic Matrix Operation

q HElib (Crypto'14)
§ (Matrix) * (Vector)

q CryptoNets (ICML'16)
§ (Plain matrix) * (Element-wisely encrypted vector)

q GAZELLE (Usenix Security'18)
§ (Column-wisely encrypted matrix) * (Plain vector)

q Homomorphic Evaluation of (Deep) Neural Networks
§ [BMMP17] Evaluation of discretized DNN, [CWM+17] Classification on DNN.

§ Evaluation of Plain model on Encrypted data.

O(d) complexity for (matrix*vector).
→ O(d2) for (matrix*matrix): not optimal.

Motivation

q Scenarios (Data/Model owner; Cloud server; Individuals)
I. Data owner trains a model and makes it available on the cloud.

II. Model provider encrypts a trained model & uploads it to the cloud to
make predictions on encrypted inputs from individuals.

III. Cloud trains a model on encrypted data and uses it to make predictions
on new encrypted inputs.

q Our Work: Homomorphic Operations between Encrypted Matrices

Main Idea

Functionality of HE Schemes

q Packing Method
§ Vector encryption & Parallel operations.

§ Enc(x1,..., xn) * Enc(y1,..., yn) = Enc(x1 * y1,..., xn * yn)

Functionality of HE Schemes

q Packing Method
§ Vector encryption & Parallel operations.

§ Enc(x1,..., xn) * Enc(y1,..., yn) = Enc(x1 * y1,..., xn * yn)

q Scalar Multiplication
§ (a1,..,an) * Enc(x1,.., xn) = Enc(a1x1,.., anxn)

q Rotation
§ Enc(x1,..., xn) → Enc(x2,..., xn, x1)

Functionality of HE Schemes

q Packing Method
§ Vector encryption & Parallel operations.

§ Enc(x1,..., xn) * Enc(y1,..., yn) = Enc(x1 * y1,..., xn * yn)

q Scalar Multiplication
§ (a1,..,an) * Enc(x1,.., xn) = Enc(a1x1,.., anxn)

q Rotation
§ Enc(x1,..., xn) → Enc(x2,..., xn, x1)

q Composition of basic operations
§ Permutation, linear transformation (Expensive)

How to Represent Matrix Arithmetic
Using HE-Friendly Operations?

Matrix Encoding

q Identify n=d2 dimensional vector to d*d matrix
§ Addition is easy.

1 2 3

4 5 6

7 8 9

1

2

3

4

5

6

7

8

9

Matrix Encoding

q Identify n=d2 dimensional vector to d*d matrix
§ Addition is easy.

§ Row or Column shifting permutations are cheap.

(Depth 1, Complexity O(1))

1 2 3

4 5 6

7 8 9

4 5 6

7 8 9

1 2 3

Matrix Encoding

q Identify n=d2 dimensional vector to d*d matrix
§ Addition is easy.

§ Row or Column shifting permutations are cheap.

(Depth 1, Complexity O(1))

1 2 3

4 5 6

7 8 9

2 3 1

5 6 4

8 9 7

Matrix Multiplication
1 2 3

4 5 6

7 8 9

A =

a b c

d e f

g h i

, B = AB = A0 ◉ B0 + A1 ◉ B1 + A2 ◉ B2

◉ : Element-wise Multiplication

1 2 3

5 6 4

9 7 8

◉

a e i

d h c

g b f

2 3 1

6 4 5

7 8 9

◉

d h c

g b f

a e i

3 1 2

4 5 6

8 9 7

◉

g b f

a e i

d h c

+ +

Matrix Mult = Generation of Ai, Bi & d-homomorphic add/mult.

Matrix Multiplication
1 2 3

4 5 6

7 8 9

A =

a b c

d e f

g h i

, B = AB = A0 ◉ B0 + A1 ◉ B1 + A2 ◉ B2

◉ : Element-wise Multiplication

1 2 3

5 6 4

9 7 8

◉

a e i

d h c

g b f

2 3 1

6 4 5

7 8 9

◉

d h c

g b f

a e i

3 1 2

4 5 6

8 9 7

◉

g b f

a e i

d h c

+ +

Matrix Mult = Generation of Ai, Bi & d-homomorphic add/mult.

Matrix Multiplication
1 2 3

4 5 6

7 8 9

A =

a b c

d e f

g h i

, B = AB = A0 ◉ B0 + A1 ◉ B1 + A2 ◉ B2

◉ : Element-wise Multiplication

1 2 3

5 6 4

9 7 8

◉

a e i

d h c

g b f

2 3 1

6 4 5

7 8 9

◉

d h c

g b f

a e i

3 1 2

4 5 6

8 9 7

◉

g b f

a e i

d h c

+ +

Matrix Mult = Generation of Ai, Bi & d-homomorphic add/mult.

Generation of Ai

A0 Generation : O(d) homomorphic operations.
Ai = ColumnShifting(A0, i) : O(1) for each.

1 2 3

5 6 4

9 7 8

A0 =

2 3 1

6 4 5

7 8 9

A1 =

3 1 2

4 5 6

8 9 7

A2 =

1 2 3

4 5 6

7 8 9

A =

Generation of Bi

B0 Generation : O(d) homomorphic operations.
Bi = RowShifting(B0, i) : O(1) for each.

a e i

d h c

g b f

B0 =

d h c

g b f

a e i

B1 =

g b f

a e i

d h c

B2 =

a b c

d e f

g h i

B =

Summary

A, B : d * d matrices

AB = A0 ◉ B0 + A1 ◉ B1 + ... + Ad-1 ◉ Bd-1

Generation of A0, B0 : General permutation - O(d).

Generation of Ai, Bi 's: Column/Row shifting from A0, B0 - O(d).

Element-wise product and summation: O(d).

Total complexity: O(d) homomorphic operations (optimal?).

Depth: 2 (scalar mult) + 1 (homo mult).

Other Operations

q Matrix Transposition
§ Complexity O(d0.5) + Depth 1.

q Parallelization
§ When the number of plaintext slots > d2.

§ Encrypt several matrices in a single ciphertext.

q Multiplication between Non-square Matrices

Implementation

Experimental Results

Based on the HEAAN library for fixed-point operation (n = 213).
All numbers have 24-bit precision.

Evaluation of Neural Networks

1 Convolution layer + 2 Fully connected layers.

Parallel evaluation on 64 images.

Comparison?

Plain model (previous work) vs. Encrypted model (ours)

Questions?
Thanks for listening

