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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

Homomorphic Encryption
c1 ← Enc(m1), . . . , ct ← Enc(mt).

c∗ ← Eval(f , c1, . . . , ct),Dec(c∗) = f (m1, . . . ,mt).
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Motivation

Applications

Cloud Computing
Medical Applications (Private data, Public functions)
Financial Applications
Advertising and Pricing
Data Mining
Biometric Authentication
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

Previous Homomorphic Encryption

An encryption c has a decryption structure 〈c , sk〉 = m̂ (mod q)
for a random encoding m̂ of message m.

I BGV style: m̂ = m + pe
mod p−−−−→ m

I FV style: m̂ = q
p m + e

b pq ·e−−−→ m

Support operations over finite characteristic plaintext spaces.
I Zp, Zp[X ]/ΦM(X )
I GF (pd)

Somewhat practical implementations based on Ring structure
I HElib (IBM), SEAL (Microsoft Research).
I Theoretically every Boolean circuit can be evaluated in a polynomial

time.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

Limitation
Many of real-world data belong to continuous spaces (e.g. RN ,CN).
They should be discretized (quantized) to an approximate value to be
stored and used in computer systems.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

Limitation

Current HE schemes are not adequate to the approximate arithmetic.

Floating-point operation
I x = ±(significand) ∗ (base)(exponent)

I Remove some inaccurate LSBs of significand after operations
I e.g. (2.313 ∗ 104) ∗ (3.127 ∗ 10−7) = 7.232751 ∗ 10−3 ≈ 7.233 ∗ 10−3

Approximate arithmetic in HE

1 Extraction of MSBs: huge depth or expensive cost
2 Exact operations:

I Evaluation of depth L circuit with η = log p-bit inputs requires a large

plaintext space (≈ p2L) and ciphertext modulus of log q = Ω(2LL · η).
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

BGV style multiplication

〈ci , sk〉 = mi + pei (mod q).

〈cmult , sk〉 = (m1 + pe1)(m2 + pe2) + pemult = [m1m2]p + pe

The MSBs of m1 ∗m2 is destroyed by ciphertext error.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Motivation

FV style multiplication

〈ci , sk〉 = (q/p) ·mi + ei (mod q) =⇒ 〈ci , sk〉 = q · Ii + (q/p) ·mi + ei .

〈cmult , sk〉 = p
q (q · I1 + (q/p) ·m1 + e1)(q · I2 + (q/p) ·m2 + e2) + emult

= q · I + (q/p) · [m1m2]p + e.

The MSBs of m1 ∗m2 is destroyed by ciphertext error.
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Main idea

Section 2

Main idea
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

New Decryption Structure

Idea 1: Embracing Noise

An encryption of significand m satisfies 〈c, sk〉 = m + e (mod q) for
some small error e.

Consider the error added to the plaintext for security to be part of the
error that occurred during approximate computations.

The decryption structure m̂ = m + e itself is an approximate value of
the original message m.

If |e| is small enough not to destroy the significand of m, the precision
is almost preserved (e.g. m = 1.23 ∗ 104, e = −17. m̂ = 12283 ≈ m).
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

New Decryption Structure

HE Operations and Noise Estimation
Homomorphic operations between ciphertexts can be done by known
techniques such as key-switching.

An encryption c of m has a relative error β if 〈c , sk〉 = m · (1± β).
I m1 · (1± β1) + m2 · (1± β2) = (m1 + m2) · (1±maxi βi ).
I m1 · (1± β1) ∗m2 · (1± β2) + emult ≈ m1m2 · (1± (β1 + β2)).

Bit size of required modulus still increases exponentially on depth:
evaluation of depth L circuit with η-bit inputs requires log q = Ω(2L · η).
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Rounding of Plaintext

Idea 2: Rescaling Process

Send a ciphertext (mod qlarge) to a smaller modulus qsmall = qlarge/p.

Rescale(c) = bc/pe
If 〈c , sk〉 = m + e (mod qlarge), then we have

〈Rescale(c), sk〉 = (m/p) + e ′ (mod qsmall)

for some e ′ = (e/p) + escale ≈ e/p.

The relative error of ciphertext is almost preserved.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Rounding of Plaintext

Rescaling after Multiplication

Rescaling procedure results in rounding of plaintext.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Rounding of Plaintext

Leveled HE scheme

Suppose that m ≈ p. Given an encryption of m, we compute
(md/pd−1) in level log d within (log d + 1) bits of precision loss.
Size of ciphertext modulus grows linearly on depth L

I log q : O(L · η) vs Ω(2LL · η)
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Packing Method

Idea 3: Batching Technique

Encrypt a message vector in a single ciphertext for SIMD operation.

RLWE-based construction over a cyclotomic ring R = Z[X ]/ΦM(X ).

I Let N = φ(M).
I Previous method: Use the factorization ΦM(X ) =

∏`
i=1 Fi (X ) (mod p)

Rp →
∏`

i=1 Zp[X ]/(Fi (X )) →
∏`

i=1 GF (pd)

m(X ) 7→ (m(X ) (mod Fi (X )))1≤i≤` 7→ (m(αi ))1≤i≤`

I Evaluation at non-conjugate roots (α1, . . . , α`) of ΦM(X ) over Zp.

I Cannot be applied to the characteristic zero plaintext spaces.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Packing Method

Idea 3: Batching Technique

Roughly, a plaintext space is the set of small polynomials in R.

Canonical embedding map σ : Q[X ]/(ΦM(X ))→ CN defined by
a(X ) 7→ (a(ζ j))j∈Z∗M where ζ = exp(−2πi/M).

I Cannonical embedding norm ||a||can∞ = ||σ(a)||∞.
I An image of σ is contained in the subring H = {(zj)j∈Z∗

M
: z−j = zj}.

I Let S ≤ Z∗M be a subgroup such that Z∗M/S = {±1}.
Our method: Adapt the complex canonical embedding
(isometric ring homomorphism) preserving the error size.

R = Z[x ]/(ΦM(X ))
σ−−−−→ H ≤ CN ι−−−−→ CN/2

m(X ) 7−→ σ(m) 7−→ (m(ζ j))j∈S
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Packing Method

Encoding/Decoding and Rounding Error

R = Z[x ]/(ΦM(X ))
σ−−−−→ H ≤ CN ι−−−−→ CN/2

m(X ) 7−→ σ(m) 7−→ (m(ζ j))j∈S

Encoding:

~z = (zj)j∈S ∈ Z[i ]N/2 7−→ z(X ) = σ−1 ◦ ι−1(~z) ∈ R[X ]/(ΦM(X ))

7−→ m(X ) = b∆ · z(X )e ∈ Z[X ]/(ΦM(X ))

for a scaling factor ∆ and rounding b·e w.r.t. ||·||can∞ .
Decoding:

m(X ) ∈ Z[X ]/(ΦM(X )) 7−→ ~m = (m(ζ j))j∈S ∈ CN/2

7−→ ~z = b∆−1 · ~me ∈ Z[i ]N/2.

Encoding/Decoding preserves the size of errors.
Rounding error is relatively small.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Packing Method

Example of Encoding & Encryption
Suppose that M = 8 (ΦM(x) = x4 + 1) and ∆ = 64. Then

CM =


1 ζ ζ2 ζ3

1 ζ3 ζ6 ζ
1 ζ5 ζ2 ζ7

1 ζ7 ζ6 ζ5

 , C−1M =
1

4
CT
M =

1

4


1 1 1 1
ζ7 ζ5 ζ3 ζ
ζ6 ζ2 ζ6 ζ2

ζ5 ζ7 ζ1 ζ3


where ζ = exp(−2πi/8) = (1 + i)/

√
2.

~z = (3 + 4i , 2− i) 7→ ι−1(~z) = (3 + 4i , 2− i , 2 + i , 3− 4i)

7→ z(X ) = 1
4(10 + 4

√
2X + 10X 2 + 2

√
2X 3)

7→ m(X ) = 160 + 91X + 160X 2 + 45X 3.

m(ζ) = 64(3.0082..+ i ∗ 4.0026..),m(ζ3) = 64(1.9918..− i ∗ 0.9974..).

Enc(m) = (b + m, a) for b = as + eenc .

Dec(m) = 64 · z(X ) + eenc + erd .
(About log ||eenc ||can∞ bits of precision loss.)
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea

Packing Method

Additional Operations

Let c = (b(X ) = m̂(X ) + a(X ) · s(X ), a(X )) be a ciphertext with
decryption structure m̂(X ).

Slot exchange
I c(i) = (b(X i ), a(X i )) is an encryption of m̂(X i ) w.r.t. the secret s(X i ).
I Permutaion on plaintext slots: (m̂j = m̂(ζ j))j∈S 7→ (m̂ij)j∈S for i ∈ S .

Slotwise conjugtation
I c(−1) = (b(X−1), a(X−1)) is an encryption of m̂(X−1) w.r.t. the secret

s(X−1).
I Conjugation on plaintext slots: (m̂j = m̂(ζ j))j∈S 7→ (m̂j)j∈S .

Key switching technique from s(i)(X ) = s(X i ) to s(X ).
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Evaluation of Circuits & Applications

Section 3

Evaluation of Circuits & Applications
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Evaluation of Circuits & Applications

Typical Circuits

Analytic Functions

Approximate evaluation of (complex) polynomials

Lemma (Polynomials)

FPHE scheme of depth L = log d evaluates a polynomial of degree d in O(d)
multiplications and precision loss < (log d + 1) bits.

Transcendental functions

I Exponential function: exp(x) ≈
∑d

j=0
1
j!x

j .
I Trigonometric functions: cos x , sin x , . . .
I Logistic function: (1 + exp(−x))−1

Lemma (Exponential Function)

FPHE scheme of depth L = log η evaluates the exponential function with
η = log p bits of precision input x = m/p ∈ [−1, 1] in O(η) multiplications and
precision loss < 1 bit.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Evaluation of Circuits & Applications

Typical Circuits

Multiplicative Inverse

Use the approximate polynomials of power-of-two degrees.
I Let y = 1− x with |y | ≤ 1/2.
I x−1 ≈ (1 + y)(1 + y2) · · · (1 + y2L−1

) = x−1 · (1± 2−2
L

).

Lemma (Multiplicative Inverse)

FPHE scheme of depth L = log η evaluates the exponential function with
η = log p bits of precision input x = m/p with |1− x | ≤ 1/2 in O(L)
multiplications and precision loss < 1 bit.
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Homomorphic Encryption for Arithmetic of Approximate Numbers

Evaluation of Circuits & Applications

Applications

Ideal Applications

FFT algorithm
I Identifying the monomial X to the primitive M-th root of unity ζ

reduces the parameter and complexity [CSV16].
I X 7→ ζ j in the slot of index j , but the whole pipeline

(FFT-Hadamard-iFFT) does not depend on the choice of j .

Exact computation using approximate arithmetic
I Multiplication of integral polynomials

Convergence property of recursive algorithm
I Newton’s method
I Gradient descent algorithm (machine learning)
I Matrix factorization (PCA)
I Control of cyber-physical system
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Evaluation of Circuits & Applications

Implementation

Experimental Result
Intel Single Core i5 2.9GHz processor

Function N log q log p
Consumed Bit precision Total Amortized

levels of input time time

x16 213 150 30 4 15 0.43s 0.10ms

x1024 215 440 40 10 22 8.53s 0.52ms

x−1 213 150 25 5 9 0.69s 0.17ms

exp(x) 213 175 35 5 20 0.98s 0.24ms

Function N log q log p
Degree of Total Amortized

polynomial time time

Logistic
213 175 35 7 0.79s 0.19ms

214 210 35 9 2.36s 0.29ms
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Evaluation of Circuits & Applications

Implementation

Experimental Result

Method
FFT

N log q Degree
Amortization Total Amortized

Dim amount time time

[CSV16]1
24 213 150 2 - 0.46s -

213 214 192 2 - 17min -

Ours2
24 213 100 2 212 0.88s 0.22ms

213 213 100 2 212 19min 0.28s

213 214 200 8 213 2.5h 1.10s

1. Six Intel Xeon E5 2.7GHz processors with 64 GB RAM
2. Four Intel Core i7 2.9 GHz processors with 16 GB RAM
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Evaluation of Circuits & Applications

Implementation
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Evaluation of Circuits & Applications

Implementation
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