Homomorphic Encryption for Arithmetic of Approximate Numbers

Jung Hee Cheon*, Andrey Kim*, Miran Kim ${ }^{\dagger}$, Yongsoo Song*
*Seoul National University
\dagger University of California - SD

2017. 7. 12.

Table of contents

(1) Motivation
(2) Main idea

- New Decryption Structure
- Rounding of Plaintext
- Packing Method
(3) Evaluation of Circuits \& Applications
- Typical Circuits
- Applications
- Implementation

Homomorphic Encryption

- $c_{1} \leftarrow \operatorname{Enc}\left(m_{1}\right), \ldots, c_{t} \leftarrow \operatorname{Enc}\left(m_{t}\right)$.
- $c^{*} \leftarrow \operatorname{Eval}\left(f, c_{1}, \ldots, c_{t}\right), \operatorname{Dec}\left(c^{*}\right)=f\left(m_{1}, \ldots, m_{t}\right)$.

Large-scale
 Problems to solve

Robust Computing power

Data

Result

Data and result privacy, result integrity, computational savings

Applications

- Cloud Computing
- Medical Applications (Private data, Public functions)
- Financial Applications
- Advertising and Pricing
- Data Mining
- Biometric Authentication

History

Previous Homomorphic Encryption

- An encryption c has a decryption structure $\langle c, s k\rangle=\hat{m}(\bmod q)$ for a random encoding \hat{m} of message m.
- BGV style: $\hat{m}=m+p e \xrightarrow{\bmod p} m$
- FV style: $\hat{m}=\frac{q}{p} m+e \xrightarrow{\left\lfloor\frac{p}{q} \cdot\right\rceil} m$
- Support operations over finite characteristic plaintext spaces.
- $\mathbb{Z}_{p}, \mathbb{Z}_{p}[X] / \Phi_{M}(X)$
- GF(p^{d})
- Somewhat practical implementations based on Ring structure
- HElib (IBM), SEAL (Microsoft Research).
- Theoretically every Boolean circuit can be evaluated in a polynomial time.

Limitation

- Many of real-world data belong to continuous spaces (e.g. $\mathbb{R}^{N}, \mathbb{C}^{N}$).
- They should be discretized (quantized) to an approximate value to be stored and used in computer systems.

Limitation

- Current HE schemes are not adequate to the approximate arithmetic.
- Floating-point operation
- $x= \pm($ significand $) *(\text { base })^{(\text {exponent })}$
- Remove some inaccurate LSBs of significand after operations
- e.g. $\left(2.313 * 10^{4}\right) *\left(3.127 * 10^{-7}\right)=7.232751 * 10^{-3} \approx 7.233 * 10^{-3}$

Approximate arithmetic in HE

(1) Extraction of MSBs: huge depth or expensive cost
(2) Exact operations:

- Evaluation of depth L circuit with $\eta=\log p$-bit inputs requires a large plaintext space $\left(\approx p^{2^{L}}\right)$ and ciphertext modulus of $\log q=\Omega\left(2^{L} L \cdot \eta\right)$.

BGV style multiplication

CTX modulus (q)

11

PTX modulus (p)
$\left\langle c_{i}, s k\right\rangle=m_{i}+p e_{i}(\bmod q)$.
$\left\langle c_{m u l t}, s k\right\rangle=\left(m_{1}+p e_{1}\right)\left(m_{2}+p e_{2}\right)+p e_{m u l t}=\left[m_{1} m_{2}\right]_{p}+p e$
The MSBs of $m_{1} * m_{2}$ is destroyed by ciphertext error.

FV style multiplication

CTX modulus (q)

PTX modulus (p)

$$
\begin{aligned}
\left\langle c_{i}, s k\right\rangle= & (q / p) \cdot m_{i}+e_{i}(\bmod q) \Longrightarrow\left\langle c_{i}, s k\right\rangle=q \cdot l_{i}+(q / p) \cdot m_{i}+e_{i} . \\
\left\langle c_{\text {mult }}, s k\right\rangle & =\frac{p}{q}\left(q \cdot l_{1}+(q / p) \cdot m_{1}+e_{1}\right)\left(q \cdot l_{2}+(q / p) \cdot m_{2}+e_{2}\right)+e_{\text {mult }} \\
& =q \cdot l+(q / p) \cdot\left[m_{1} m_{2}\right]_{p}+e .
\end{aligned}
$$

The MSBs of $m_{1} * m_{2}$ is destroyed by ciphertext error.

Section 2

Main idea

Idea 1: Embracing Noise

- An encryption of significand m satisfies $\langle c, s k\rangle=m+e(\bmod q)$ for some small error e.
- Consider the error added to the plaintext for security to be part of the error that occurred during approximate computations.
- The decryption structure $\hat{m}=m+e$ itself is an approximate value of the original message m.
- If $|e|$ is small enough not to destroy the significand of m, the precision is almost preserved (e.g. $m=1.23 * 10^{4}, e=-17 . \hat{m}=12283 \approx m$).

CTX modulus (q)

\square

HE Operations and Noise Estimation

- Homomorphic operations between ciphertexts can be done by known techniques such as key-switching.

- An encryption c of m has a relative error β if $\langle c, s k\rangle=m \cdot(1 \pm \beta)$.
- $m_{1} \cdot\left(1 \pm \beta_{1}\right)+m_{2} \cdot\left(1 \pm \beta_{2}\right)=\left(m_{1}+m_{2}\right) \cdot\left(1 \pm \max _{i} \beta_{i}\right)$.
- $m_{1} \cdot\left(1 \pm \beta_{1}\right) * m_{2} \cdot\left(1 \pm \beta_{2}\right)+e_{m u l t} \approx m_{1} m_{2} \cdot\left(1 \pm\left(\beta_{1}+\beta_{2}\right)\right)$.

Bit size of required modulus still increases exponentially on depth: evaluation of depth L circuit with η-bit inputs requires $\log q=\Omega\left(2^{L} \cdot \eta\right)$.

Idea 2: Rescaling Process

- Send a ciphertext $\left(\bmod q_{\text {large }}\right)$ to a smaller modulus $q_{\text {small }}=q_{\text {large }} / p$.
- Rescale $(c)=\lfloor c / p\rceil$
- If $\langle c, s k\rangle=m+e\left(\bmod q_{\text {large }}\right)$, then we have

$$
\langle\operatorname{Rescale}(c), s k\rangle=(m / p)+e^{\prime} \quad\left(\bmod q_{\text {small }}\right)
$$

for some $e^{\prime}=(e / p)+e_{\text {scale }} \approx e / p$.

- The relative error of ciphertext is almost preserved.

Homomorphic Encryption for Arithmetic of Approximate Numbers

Main idea
-Rounding of Plaintext

Rescaling after Multiplication

- Rescaling procedure results in rounding of plaintext.

Leveled HE scheme

- Suppose that $m \approx p$. Given an encryption of m, we compute $\left(m^{d} / p^{d-1}\right)$ in level $\log d$ within $(\log d+1)$ bits of precision loss.
- Size of ciphertext modulus grows linearly on depth L
- $\log q: \underline{O(L \cdot \eta)}$ vs $\Omega\left(2^{L} L \cdot \eta\right)$

Idea 3: Batching Technique

- Encrypt a message vector in a single ciphertext for SIMD operation.
- RLWE-based construction over a cyclotomic ring $\mathcal{R}=\mathbb{Z}[X] / \Phi_{M}(X)$.
- Let $N=\phi(M)$.
- Previous method: Use the factorization $\Phi_{M}(X)=\prod_{i=1}^{\ell} F_{i}(X)(\bmod p)$

$$
\begin{array}{clcll}
\mathcal{R}_{p} & \rightarrow \quad \prod_{i=1}^{\ell} \mathbb{Z}_{p}[X] /\left(F_{i}(X)\right) & \rightarrow \quad \prod_{i=1}^{\ell} G F\left(p^{d}\right) \\
m(X) & \mapsto \quad\left(m(X) \quad\left(\bmod F_{i}(X)\right)\right)_{1 \leq i \leq \ell} & \mapsto & \left(m\left(\alpha_{i}\right)\right)_{1 \leq i \leq \ell}
\end{array}
$$

- Evaluation at non-conjugate roots $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of $\Phi_{M}(X)$ over \mathbb{Z}_{p}.
- Cannot be applied to the characteristic zero plaintext spaces.

Idea 3: Batching Technique

- Roughly, a plaintext space is the set of small polynomials in \mathcal{R}.
- Canonical embedding map $\sigma: \mathbb{Q}[X] /\left(\Phi_{M}(X)\right) \rightarrow \mathbb{C}^{N}$ defined by $a(X) \mapsto\left(a\left(\zeta^{j}\right)\right)_{j \in \mathbb{Z}_{M}^{*}}$ where $\zeta=\exp (-2 \pi i / M)$.
- Cannonical embedding norm $\|a\|_{\infty}^{c a n}=\|\sigma(a)\|_{\infty}$.
- An image of σ is contained in the subring $\mathbb{H}=\left\{\left(z_{j}\right)_{j \in \mathbb{Z}_{M}^{*}}: z_{-j}=\bar{z}_{j}\right\}$.
- Let $S \leq \mathbb{Z}_{M}^{*}$ be a subgroup such that $\mathbb{Z}_{M}^{*} / S=\{ \pm 1\}$.
- Our method: Adapt the complex canonical embedding (isometric ring homomorphism) preserving the error size.

$$
\stackrel{\mathbb{C}^{N / 2}}{\left(m\left(\zeta^{j}\right)\right)_{j \in S}}
$$

Encoding/Decoding and Rounding Error

$$
\begin{array}{ccc}
\mathcal{R}=\mathbb{Z}[x] /\left(\Phi_{M}(X)\right) \\
m(X) & \stackrel{\sigma}{\longmapsto} & \mathbb{H} \leq \mathbb{C}^{N} \\
\sigma(m) & \iota & \mathbb{C}^{N / 2} \\
\left(m\left(\zeta^{j}\right)\right)_{j \in S}
\end{array}
$$

- Encoding:

$$
\begin{aligned}
\vec{z}=\left(z_{j}\right)_{j \in S} \in \mathbb{Z}[i]^{N / 2} & \longmapsto z(X)=\sigma^{-1} \circ \iota^{-1}(\vec{z}) \in \mathbb{R}[X] /\left(\Phi_{M}(X)\right) \\
& \longmapsto m(X)=\lfloor\Delta \cdot z(X)] \in \mathbb{Z}[X] /\left(\Phi_{M}(X)\right)
\end{aligned}
$$

for a scaling factor Δ and rounding $[\cdot\rceil$ w.r.t. $\|\cdot\|_{\infty}^{c a n}$.

- Decoding:

$$
\begin{aligned}
m(X) \in \mathbb{Z}[X] /\left(\Phi_{M}(X)\right) & \longmapsto \vec{m}=\left(m\left(\zeta^{j}\right)\right)_{j \in S} \in \mathbb{C}^{N / 2} \\
& \longmapsto \vec{z}=\left\lfloor\Delta^{-1} \cdot \vec{m}\right\rceil \in \mathbb{Z}[i]^{N / 2}
\end{aligned}
$$

- Encoding/Decoding preserves the size of errors.
- Rounding error is relatively small.

Example of Encoding \& Encryption

Suppose that $M=8\left(\Phi_{M}(x)=x^{4}+1\right)$ and $\Delta=64$. Then

$$
C_{M}=\left(\begin{array}{cccc}
1 & \zeta & \zeta^{2} & \zeta^{3} \\
1 & \zeta^{3} & \zeta^{6} & \zeta \\
1 & \zeta^{5} & \zeta^{2} & \zeta^{7} \\
1 & \zeta^{7} & \zeta^{6} & \zeta^{5}
\end{array}\right), C_{M}^{-1}=\frac{1}{4} \overline{C_{M}^{\top}}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\zeta^{7} & \zeta^{5} & \zeta^{3} & \zeta \\
\zeta^{6} & \zeta^{2} & \zeta^{6} & \zeta^{2} \\
\zeta^{5} & \zeta^{7} & \zeta^{1} & \zeta^{3}
\end{array}\right)
$$

where $\zeta=\exp (-2 \pi i / 8)=(1+i) / \sqrt{2}$.

$$
\begin{aligned}
\vec{z}=(3+4 i, 2-i) & \mapsto \iota^{-1}(\vec{z})=(3+4 i, 2-i, 2+i, 3-4 i) \\
& \mapsto z(X)=\frac{1}{4}\left(10+4 \sqrt{2} X+10 X^{2}+2 \sqrt{2} X^{3}\right) \\
& \mapsto m(X)=160+91 X+160 X^{2}+45 X^{3} .
\end{aligned}
$$

$$
m(\zeta)=64(3.0082 . .+i * 4.0026 . .), m\left(\zeta^{3}\right)=64(1.9918 . .-i * 0.9974 . .)
$$

- $\operatorname{Enc}(m)=(b+m, a)$ for $b=a s+e_{\text {enc }}$.
- $\operatorname{Dec}(m)=64 \cdot z(X)+e_{e n c}+e_{r d}$.
(About $\log \left\|e_{e n c}\right\|_{\infty}^{\text {can }}$ bits of precision loss.)

Additional Operations

- Let $c=(b(X)=\hat{m}(X)+a(X) \cdot s(X), a(X))$ be a ciphertext with decryption structure $\hat{m}(X)$.
- Slot exchange
- $c^{(i)}=\left(b\left(X^{i}\right), a\left(X^{i}\right)\right)$ is an encryption of $\hat{m}\left(X^{i}\right)$ w.r.t. the secret $s\left(X^{i}\right)$.
- Permutaion on plaintext slots: $\left(\hat{m}_{j}=\hat{m}\left(\zeta^{j}\right)\right)_{j \in S} \mapsto\left(\hat{m}_{i j}\right)_{j \in S}$ for $i \in S$.
- Slotwise conjugtation
- $c^{(-1)}=\left(b\left(X^{-1}\right), a\left(X^{-1}\right)\right)$ is an encryption of $\hat{m}\left(X^{-1}\right)$ w.r.t. the secret $s\left(X^{-1}\right)$.
- Conjugation on plaintext slots: $\left(\hat{m}_{j}=\hat{m}\left(\zeta^{j}\right)\right)_{j \in S} \mapsto\left(\widehat{m}_{j}\right)_{j \in S}$.
- Key switching technique from $s^{(i)}(X)=s\left(X^{i}\right)$ to $s(X)$.

Section 3

Evaluation of Circuits \& Applications

Analytic Functions

- Approximate evaluation of (complex) polynomials

Lemma (Polynomials)

FPHE scheme of depth $L=\log d$ evaluates a polynomial of degree d in $O(d)$ multiplications and precision loss $<(\log d+1)$ bits.

- Transcendental functions
- Exponential function: $\exp (x) \approx \sum_{j=0}^{d} \frac{1}{j!} x^{j}$.
- Trigonometric functions: $\cos x, \sin x, \ldots$
- Logistic function: $(1+\exp (-x))^{-1}$

Lemma (Exponential Function)

FPHE scheme of depth $L=\log \eta$ evaluates the exponential function with $\eta=\log p$ bits of precision input $x=m / p \in[-1,1]$ in $O(\eta)$ multiplications and precision loss <1 bit.

Multiplicative Inverse

- Use the approximate polynomials of power-of-two degrees.
- Let $y=1-x$ with $|y| \leq 1 / 2$.
- $x^{-1} \approx(1+y)\left(1+y^{2}\right) \cdots\left(1+y^{2^{L-1}}\right)=x^{-1} \cdot\left(1 \pm 2^{-2^{L}}\right)$.

Lemma (Multiplicative Inverse)

FPHE scheme of depth $L=\log \eta$ evaluates the exponential function with $\eta=\log p$ bits of precision input $x=m / p$ with $|1-x| \leq 1 / 2$ in $O(L)$ multiplications and precision loss <1 bit.

Ideal Applications

- FFT algorithm
- Identifying the monomial X to the primitive M-th root of unity ζ reduces the parameter and complexity [CSV16].
- $X \mapsto \zeta^{j}$ in the slot of index j, but the whole pipeline (FFT-Hadamard-iFFT) does not depend on the choice of j.
- Exact computation using approximate arithmetic
- Multiplication of integral polynomials
- Convergence property of recursive algorithm
- Newton's method
- Gradient descent algorithm (machine learning)
- Matrix factorization (PCA)
- Control of cyber-physical system

Experimental Result

Intel Single Core i5 2.9 GHz processor

Function	N	$\log q$	$\log p$	Consumed levels	Bit precision of input	Total time	Amortized time
x^{16}	2^{13}	150	30	4	15	0.43 s	0.10 ms
x^{1024}	2^{15}	440	40	10	22	8.53 s	0.52 ms
x^{-1}	2^{13}	150	25	5	9	0.69 s	0.17 ms
$\exp (x)$	2^{13}	175	35	5	20	0.98 s	0.24 ms

Function	N	$\log q$	$\log p$	Degree of polynomial	Total time	Amortized time
Logistic	2^{13}	175	35	7	0.79 s	0.19 ms
	2^{14}	210	35	9	2.36 s	0.29 ms

Experimental Result

Method	FFT Dim	N	$\log q$	Degree	Amortization amount	Total time	Amortized time
[_{*}^{*}OUSV16^{2}]1	2^{4}	2^{13}	150	2	-	0.46 s	-
	2^{13}	2^{14}	192	2	-	17 min	-
	2^{4}	2^{13}	100	2	2^{12}	0.88 s	0.22 ms
	2^{13}	2^{14}	100	2	2^{12}	19 min	0.28 s

1. Six Intel Xeon E5 2.7 GHz processors with 64 GB RAM
2. Four Intel Core i7 2.9 GHz processors with 16 GB RAM

$$
>_{k} \times r{ }^{2}
$$

Reference

- Brakerski, Gentry, and Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping, 2012.
- Gentry, Halevi, and Smart. Homomorphic evaluation of the AES circuit, 2012.
- Bos et al. Improved security for a ring-based fully homomorphic encryption scheme, 2013.
- Costache, Smart, and Vivek. Faster homomorphic evaluation of discrete fourier transforms, 2016.
- Images
- http://www.ibmsystemsmag.com/ibmi/trends/whatsnew/Biometric-Authentication-101/
- https://www.societyofvirtualassistants.co.uk/va-products/uk-va-industry-survey-take-part/
- https://en.wikipedia.org/wiki/Trigonometry
- https://iq.intel.com/dr-you-handheld-medical-devices/

