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Homomorphic Encryption for Arithmetic of Approximate Numbers

L Motivation

Homomorphic Encryption
@ ¢ < Enc(my),...,ct < Enc(my).

e ¢c* <« Eval(f,c,...,ct), Dec(c*) = f(my,...,m
Data
Result %
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L Motivation
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L Motivation
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Homomorphic Encryption for Arithmetic of Approximate Numbers

L Motivation

Previous Homomorphic Encryption

@ An encryption ¢ has a decryption structure (c, sk) = m (mod q)
for a random encoding M of message m.

» BGV style: m = m+ pe o4y

» FV style: m = %m—|—e —g——> m

@ Support operations over finite characteristic plaintext spaces.
> Lp, Lp[X]/®m(X)
> GF(p9)

@ Somewhat practical implementations based on Ring structure

» HEIlib (IBM), SEAL (Microsoft Research).
» Theoretically every Boolean circuit can be evaluated in a polynomial
time.
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L Motivation

Limitation
@ Many of real-world data belong to continuous spaces (e.g. RV, CN).

@ They should be discretized (quantized) to an approximate value to be
stored and used in computer systems.
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L Motivation

Limitation

@ Current HE schemes are not adequate to the approximate arithmetic.
o Floating-point operation

» x = +(significand)  (base)(exPonent)

» Remove some inaccurate LSBs of significand after operations

> eg. (2.313%10%) % (3.127 % 1077) = 7.232751 % 103 ~ 7.233 % 103

Approximate arithmetic in HE

@ Extraction of MSBs: huge depth or expensive cost
© Exact operations:

» Evaluation of depth L circuit with 7 = log p-bit inputs requires a large
plaintext space (= p2L) and ciphertext modulus of log g = Q(2LL - 7).
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L Motivation

BGV style multiplication

CTX modulus (q)

PTX modulus (p )
(ci, sk) = m; + pe; (mod q).

(Cmult, sk) = (m1 + per)(m2 + pe2) + pemur = [m1ma], + pe

The MSBs of my % my is destroyed by ciphertext error.
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LMotivation

FV style multiplication
CTX modulus (q)

x

[ 1
1, e, |
1, e, |

*(p/g) Il
BT
|

PTX modulus (p)

{ci,sk) = (q/p) - mi + e (mod q) = (cj,sk) = q-li+(q/p) - mi + &;.
<Cmulta 5k> = §(q : Il + (q/p) -my + el)(q : I2 + (CI/P) -mo + e2) + emult
= q-1+(q/p) - [mm],+e.
The MSBs of my *x my is destroyed by ciphertext error.
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L Main idea

Section 2

Main idea
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L Main idea

New Decryption Structure

Idea 1: Embracing Noise

An encryption of significand m satisfies (c,sk) = m + e (mod q) for
some small error e.

Consider the error added to the plaintext for security to be part of the
error that occurred during approximate computations.

The decryption structure m = m + e itself is an approximate value of
the original message m.

If |e| is small enough not to destroy the significand of m, the precision
is almost preserved (e.g. m = 1.23%10% e = —17. A = 12283 ~ m).

CTX modulus (q)

(c,sk) = | m |
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L Main idea

New Decryption Structure

HE Operations and Noise Estimation

@ Homomorphic operations between ciphertexts can be done by known
techniques such as key-switching.

|
m,

x

1]
|

@ An encryption ¢ of m has a relative error 3 if (c,sk) = m-(1+£p5).
> my - (LE£61)+m-(1£62) = (my + ma) - (1+ max; §;).
> my - (LEBr)xmo - (1£ B2) + emue = mumo - (1 £ (81 + 52)).

Bit size of required modulus still increases exponentially on depth:
evaluation of depth L circuit with 7-bit inputs requires log g = Q(2L - 7).
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L Main idea

Rounding of Plaintext

|dea 2: Rescaling Process

CTX modulus ( qrarge )

| I
9

CTX modulus (gsmatl =q/p)

@ Send a ciphertext (mod gjarge) to a smaller modulus gsmai = Glarge/P-
@ Rescale(c) = |c/p]
o If (c,sk) = m+ e (mod jarge), then we have

(Rescale(c),sk) = (m/p) + € (mod qsman)

for some €' = (e/p) + €scale = €/p.
@ The relative error of ciphertext is almost preserved.
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L Main idea

Rounding of Plaintext

Rescaling after Multiplication

3
|

bt

]|
m, *
|

@ Rescaling procedure results in rounding of plaintext.
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L Main idea

Rounding of Plaintext

Leveled HE scheme

e

-

m*/p?

«

m

m*/p3

i
af e

@ Suppose that m = p. Given an encryption of m, we compute
(m9/p9=1) in level log d within (log d + 1) bits of precision loss.
@ Size of ciphertext modulus grows linearly on depth L
» logq: O(L-n) vs Q2L -7n)
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L Main idea

Idea 3: Batching Technique

@ Encrypt a message vector in a single ciphertext for SIMD operation.
@ RLWE-based construction over a cyclotomic ring R = Z[X]/®Pn(X).

> Let N = ¢(M).
. L ¢
» Previous method: Use the factorization ®p(X) = [],_; Fi(X) (mod p)

Re = I ZeXV/(F(X) = Il GF(PY)
m(X) = (m(X) (mod Fi(X)))i<i<e = (m(ai))i<i<e
» Evaluation at non-conjugate roots (cv, ..., ag) of ®p(X) over Zp.

» Cannot be applied to the characteristic zero plaintext spaces.
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L Main idea
Packing Method
|

Idea 3: Batching Technique

@ Roughly, a plaintext space is the set of small polynomials in R.
e Canonical embedding map o : Q[X]/(®m(X)) — CN defined by
a(X) = (a(¢?))jez;, where ¢ = exp(—2mi/M).
» Cannonical embedding norm [|a||2" = ||0(3)]|co-
» An image of o is contained in the subring H = {(z)jez;, : z—; = 7}
» Let S < Zj, be a subgroup such that Z},/S = {£1}.
@ Our method: Adapt the complex canonical embedding
(isometric ring homomorphism) preserving the error size.

R =1Z[x]/(Pmu(X)) —— H<CV ——  CN?
m(X) — a(m)  — (m())jes
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L Main idea

Encoding/Decoding and Rounding Error

R=1Z[x]/(Pm(X)) —— H<CV ——  CN2
m(X) —a(m) — (m(¢))jes
@ Encoding:

7= (z)jes € ZIN? — 2(X) =07t 017H(2) € RIX]/(Om(X))
— m(X) = [A-z(X)] € Z[X]/(®m(X))
for a scaling factor A and rounding [-] w.r.t. ||-]|$".
@ Decoding:
m(X) € ZIX)/(®u(X)) — i = (m(¢))jes € CV/2
— Z=|A"t.m) e z[i]V/>.

@ Encoding/Decoding preserves the size of errors.

@ Rounding error is relatively small. 19730
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L Main idea

Example of Encoding & Encryption
Suppose that M = 8 (®p(x) = x* +1) and A = 64. Then

1 ¢ ¢ ¢ 1 1 1 1

1 3 6 1 1 7 5 3
o[ 1886 ataat] 888 S

1 ¢ ¢ ¢ ¢ ¢ ¢t ¢

where ¢ = exp(—27i/8) = (1+i)/V/2.
Z=0B+4i,2—i) = Y2 =CB+4i,2—i,2+i,3—4i)

= z(X) = 2(10 + 42X + 10X2 + 2V/2X3)
— m(X) =160+ 91X + 160X2 + 45X3.

m(¢) = 64(3.0082.. + i 4.0026..), m(C3) = 64(1.9918.. — i % 0.9974..).

e Enc(m) = (b+ m,a) for b= as + eepc.

@ Dec(m) =64 - z(X) + eenc + €rq-

(About log ||€enc||S2" bits of precision loss.)
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L Main idea

Additional Operations

o Let ¢ = (b(X) = m(X) + a(X) - s(X),a(X)) be a ciphertext with
decryption structure m(X).
@ Slot exchange
> ¢} = (b(X"),a(X")) is an encryption of M(X') w.r.t. the secret s(X').
» Permutaion on plaintext slots: (f; = M({?))jes — (Mij)jes for i € S.
@ Slotwise conjugtation

) = (b(X71),a(X~1)) is an encryption of Mm(X~!) w.r.t. the secret
s(X71). _
» Conjugation on plaintext slots: (f; = M(¢’))jes — (Mj)jes.

o Key switching technique from s()(X) = s(X') to s(X).
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LEvaluation of Circuits & Applications

Section 3

Evaluation of Circuits & Applications
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LEvaluation of Circuits & Applications

Typical Circuits

Analytic Functions
@ Approximate evaluation of (complex) polynomials

Lemma (Polynomials)

FPHE scheme of depth L = log d evaluates a polynomial of degree d in O(d)
multiplications and precision loss < (log d + 1) bits.

@ Transcendental functions

. . d .
> Exponential function: exp(x) ~ >:_, jl,xf.
» Trigonometric functions: cos x,sinx, . ..

» Logistic function: (1 + exp(—x))~!

Lemma (Exponential Function)

FPHE scheme of depth L = logn evaluates the exponential function with
n = log p bits of precision input x = m/p € [—1,1] in O(n) multiplications and
precision loss < 1 bit.
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LEvaluation of Circuits & Applications

Multiplicative Inverse

@ Use the approximate polynomials of power-of-two degrees.
» Let y =1— x with |y| <1/2.
> x la(L4y)14y?) - (14y? )=x1-(1+272).

Lemma (Multiplicative Inverse)

FPHE scheme of depth L = logn evaluates the exponential function with
n = log p bits of precision input x = m/p with |1 — x| < 1/2 in O(L)
multiplications and precision loss < 1 bit.
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LEvaluation of Circuits & Applications

|deal Applications

o FFT algorithm
> Identifying the monomial X to the primitive M-th root of unity ¢
reduces the parameter and complexity [CSV16].
» X — (7 in the slot of index j, but the whole pipeline
(FFT-Hadamard-iFFT) does not depend on the choice of j.
@ Exact computation using approximate arithmetic
» Multiplication of integral polynomials

@ Convergence property of recursive algorithm
» Newton's method
» Gradient descent algorithm (machine learning)
» Matrix factorization (PCA)
» Control of cyber-physical system
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LEvaluation of Circuits & Applications

Experimental Result
Intel Single Core i5 2.9GHz processor

. Consumed|Bit precision|| Total |Amortized
Function || N |logq | logp
levels of input time time
x10 2131 150 | 30 4 15 0.43s| 0.10ms
x1024 112151 440 | 40 10 22 8.53s | 0.52ms
x1 2131 150 | 25 5 9 0.69s | 0.17ms
exp(x) ||283] 175 | 35 5 20 0.98s| 0.24ms
D f || Total |Amortized
Function| N logq | logp cgree o otal |amortize
polynomial || time time
| 21 | 175 | 35 7 0.79s | 0.19ms
Logistic n
2 210 35 9 2.36s | 0.29ms
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LEvaluation of Circuits & Applications

Experimental Result

Method FFT N | logq | Degree Amortization | Total |Amortized
Dim amount time time
Ll 2% {21 150 2 - 0.46s -
[CSvie] 213 | 2141 192 2 - 17min -
24 [ 2131 100 2 212 0.88s | 0.22ms
Ours? || 213 | 213 | 100 2 212 19min| 0.28s
213 [ 2141 200 8 213 2.5h | 1.10s

1. Six Intel Xeon E5 2.7GHz processors with 64 GB RAM
2. Four Intel Core i7 2.9 GHz processors with 16 GB RAM
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LEvaluation of Circuits & Applications
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LEvaluation of Circuits & Applications

Implementation
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