Secure Sketch for Set Distance on Noisy Data KMS Annual Meeting 2014

Jung Hee Cheon and Yongsoo Song

Seoul National University

Oct 25, 2014

Noisy information in cryptography

- Classical cryptographic applications
 - Lack of error-tolerance
 - Key arrangement problem: storing, reliably reproducing
- Noisy information (biometric)
 - More plentiful (higher entropy) and convenient
 - Small noises are introduced during acquisition and processing
 - Cannot be reproduced exactly

Biometric security system

- Biometric templates are elements of a metric space $(\mathcal{M}, \mathsf{DIST})$
 - For an enrollment A, a query B is accepted whenever $DIST(A, B) \leq \tau$
- Performance indicators: FRR, FAR

Theoretic primitive

- Secure sketch on a metric space ($\mathcal{M},\mathsf{DIST}$) with parameter (au,\mathcal{L})
 - Additional helper data is made public
 - Consisting of Enc : $\mathcal{M} \to \{0,1\}^*$ and Dec : $\mathcal{M} \times \{0,1\}^* \to \mathcal{M}$ satisfying Dec(B, Enc(A)) = A if DIST(A, B) $\leq \tau$
 - Can be reduced to many cryptographic applications such as secure authentication, key binding, key extraction
 - Security: bound the entropy loss $\mathcal{L} = \mathbf{H}_{\infty}(X) \tilde{\mathbf{H}}_{\infty}(X|\mathsf{Enc}(X))$
 - Reusability: multi-templates attack
 - Set distance: $(A, B) \mapsto |A \triangle B|$ for $A \triangle B = (A \backslash B) \cup (B \backslash A)$
 - Fuzzy vault [JS06], Improved JS [DORS08]

Two phases

- Biometric system
 - Express practical algorithms as a metric function
- Cryptographic application
 - Construct a secure sketch scheme for a given distance function

Set distance on noisy data

Motivation

- Many biometric templates are represented in a general form: The original A is a set of s feature points of a metric space (U, dist)
- Each point is perturbed by a distance less than δ (point-wise error) and some points can be replaced (set distance) under permissible noise
- Previous work
 - Count the number of pairs $(a, b) \in A \times B$ such that $dist(a, b) < \delta$: $A \setminus_{\delta} B = \{a \in A : dist(a, B) \ge \delta\}, A \triangle_{\delta} B = (A \setminus_{\delta} B) \cup (B \setminus_{\delta} A)$
 - Approximate set distance $ASD(A, B) = |A \triangle_{\delta} B|$: Hard to construct a (reusable) secure sketch scheme
 - Quantized set distance QSD(A, B) = SD(Q(A), Q(B)):
 Errors on the boundary of quantization

- Propose a new metric function
 - More reasonable measure for biometric matching than previous methods
 - Biometric system based on this metric achieves better performance indicators
- Construct a secure sketch scheme for this metric
 - Lower entropy loss independent to the size of biometric templates
 - Achieve the reusability

Indiscrete set distance

• Generalization of set distance

•
$$SD(A, B) = \sum_{a \in A} dist_0(a, B) + \sum_{b \in B} dist_0(b, A)$$

for $dist_0(x, y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$

Local distance dist_δ(x, y) := min{1, δ⁻¹ · dist(x, y)}

•
$$\mathsf{ISD}_{\delta}(A, B) := \sum_{a \in A} \mathsf{dist}_{\delta}(a, B) + \sum_{b \in B} \mathsf{dist}_{\delta}(b, A)$$

Indiscrete set distance

- Consider both the set distance and the point-wise error
- Much more resemble a practical standard of biometric recognition

- D, R: distributions of biometric templates of genuine, random data
 τ: threshold (upper bound of tolerable error size)
- Performance indicators of a biometric system

$$\begin{aligned} \mathsf{FRR}_{\mathsf{DIST}} &= \mathsf{Pr}_{A, B \leftarrow \mathcal{D}}[\mathsf{DIST}(A, B) > \tau] \\ \mathsf{FAR}_{\mathsf{DIST}} &= \mathsf{Pr}_{A \leftarrow \mathcal{D}, R \leftarrow \mathcal{R}}[\mathsf{DIST}(A, R) \le \tau] \end{aligned}$$

- $A \leftarrow \mathcal{D} : A = \{a_i + e_i : 1 \le i \le s\}, a_i \leftarrow S \subseteq \mathcal{U}, e_i \leftarrow \mathcal{E}$ $\mathsf{FAR}_{\mathsf{DIST}} = \Theta(|\{R \subseteq \mathcal{U} : \mathsf{DIST}(A, R) \le \tau\}|)$
- $\mathsf{FRR}_{\mathsf{ISD}_{\delta}}, \mathsf{FRR}_{\mathsf{ASD}} < \mathsf{FRR}_{\mathsf{QSD}}$
- $\mathsf{FAR}_{\mathsf{ASD}} = \mathsf{FAR}_{\mathsf{QSD}}, \, \mathsf{log}(\mathsf{FAR}_{\mathsf{QSD}}) \mathsf{log}(\mathsf{FAR}_{\mathsf{ISD}_{\delta}}) \geq (s \tau/2) \cdot \mathsf{log} \, \delta$

Construction of secure sketch scheme (1)

- Convert the indiscrete set distance into the set distance
 - ι is called a discretizer if |ι(a)| = δ
 and SD(ι(a), ι(b)) = δ · dist_δ(a, b) for all a, b ∈ U
 - $\hat{\iota}(A) := \bigcup_{a \in A} \iota(a)$ $SD(\hat{\iota}(A), \hat{\iota}(B)) = \delta \cdot |A \triangle_{\delta}B| + 2 \cdot \sum_{dist(a,b) < \delta} dist(a,b) = \delta \cdot ISD_{\delta}(A,B)$
 - $\hat{\iota}$ is an isometry from $\delta \cdot \mathsf{ISD}_{\delta}(\cdot, \cdot)$ to $\mathsf{SD}(\cdot, \cdot)$

Construction of secure sketch scheme (2)

• Square lattice

• Honeycombed lattice

• Can be generalized to higher dimensional cases

Construction of secure sketch scheme (3)

- Recall that a (τ, L)-secure sketch scheme (Enc, Dec) on a metric space (M, DIST) satisfies the following properties:
 - Dec(B, Enc(A)) = A if $DIST(A, B) \le \tau$

•
$$\mathbf{H}_{\infty}(X) - \ddot{\mathbf{H}}_{\infty}(X|\text{Enc}(X)) \leq \mathcal{L}$$
 for any X

Theorem

Let $(Enc(\cdot), Dec(\cdot, \cdot))$ be a $(\delta\tau, \mathcal{L})$ -secure sketch scheme for the set distance. If ι is a discretizer, then $(Enc \circ \hat{\iota}(\cdot), \hat{\iota}^{-1} \circ Dec(\hat{\iota}(\cdot), \cdot))$ is a (τ, \mathcal{L}) -secure sketch scheme for the indiscrete set distance.

• We also suggest a reusable secure sketch scheme for the set distance with asymptotically minimal entropy loss

Corollary

There is a reusable $(\tau, \mathcal{L} = \delta \tau \cdot \log n^d)$ -secure sketch for the indiscrete set distance ISD_{δ} on $\mathcal{U} = [0, n)^d \cap \mathbb{Z}^d$.

Metric	Quantized SD	Approximate SD	Indiscrete SD
FRR	High	Low	Low
FAR	High	High	Low
Reusability	Yes	No	Yes
Entropy loss	$\tau \log n + s \log \delta$	$\tau \log n + s(1 + \log(2\delta))$	$\delta au\log n$

• Proposed a new metric function

- Consider both the set distance and the point-wise error
- Biometric security system based on this metric has better performance
- Constructed a secure sketch scheme for this metric
 - Suggested a reusable secure sketch scheme for the set distance
 - Proposed a general method using the notion of discretizer
 - Reduced entropy loss independent to the size of templates

#