Approximate

 Homomorphic EncryptionMOTIVATION, CONSTRUCTION, APPLICATIONS

YONGSOO SONG

UCSD

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

Cryptography community has improved the Efficiency of HE system.

- Performance: Speed, Storage, Expansion rate, etc.
- Functionality: Key-switching, Rotation, Plaintext Space, etc.

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

Cryptography community has improved the Efficiency of HE system.

- Performance: Speed, Storage, Expansion rate, etc.
- Functionality: Key-switching, Rotation, Plaintext Space, etc.

Reduction of "Gap" between Real and Encrypted computations.

Datatypes and operations

- Boolean Circuit (Bit Operation)
- Integer Operations
- Modular Arithmetic
- Approximate Arithmetic (Fixed/Floating-point Operation)
- Logical Operations (If \& Else statement)

Homomorphic Encryption Schemes

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	$\mathrm{GF}\left(\mathrm{p}^{\mathrm{d}}\right)\left(\mathrm{Z}_{\mathrm{p}}\right)$	Polylog overhead (Amortized time \& Expansion rate)	Bootstrapping	HElib SEAL ...
Gentry-Sahai-Waters'13				
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene’16,17				

Homomorphic Encryption Schemes

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	$\mathrm{GF}\left(\mathrm{p}^{\mathrm{d}}\right)\left(\mathrm{Z}_{\mathrm{p}}\right)$	Polylog overhead (Amortized time \& Expansion rate)	Bootstrapping	HElib SEAL ...
Gentry-Sahai-Waters'13	$\mathrm{Z}, \mathrm{Z}[\mathrm{X}](\{0,1\})$	Beauty ()	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene’16,17				

Homomorphic Encryption Schemes

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	$\mathrm{GF}\left(\mathrm{p}^{\mathrm{d}}\right)\left(\mathrm{Z}_{\mathrm{p}}\right)$	Polylog overhead (Amortized time \& Expansion rate)	Bootstrapping	HElib SEAL \qquad
Gentry-Sahai-Waters'13	$\mathrm{Z}, \mathrm{Z}[\mathrm{X}](\{0,1\})$	Beauy-: Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene’16,17	$\{0,1\},\left(\{0,1\}^{*}\right)$	Evaluation with Bootstrapping. Latency.	Amortized time \& Expansion rate	FHEW TFHE

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

- Machine Learning:	11	(2018/233,202,139,074, 2017/979,715.
		SSCI, IEEE Access, IEEE Journal, ICCV, SMARTCOMP)
- Neural Network:	2	(2018/073, 2017/1114)
- Genomic Data:	7	(2017/955,770,294,228. EUSIPCO, SMARTCOMP, IEEE Journal)
- Health Data:	2	(IBM Journal, IEEE Journal)
- Biometric Data:	2	(IEEE Access, IEEE Conference)
- Energy Management:	3	(2017/1212. IEEE Big Data, IET Journal)
- Big Data:	1	(ICBDA)
- Advertising:	1	(WIFS)
- Internet of Things:	1	(IWCMC)
- Election:	1	(2017/166)

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

- Machine Learning:	11	$(2018 / 233,202,139,074,2017 / 979,715$. SSCI, IEEE Access, IEEE Journal, ICCV, SMARTCOMP)
- Neural Network: 2 $(2018 / 073,2017 / 1114)$		
- Genomic Data:	7	$(2017 / 955,770,294,228$. EUSIPCO, SMARTCOMP, IEEE Journal)
- Health Data:	2	(IBM Journal, IEEE Journal)
- Biometric Data:	2	(IEEE Access, IEEE Conference)
- Energy Management:	3	$(2017 / 1212 . ~ I E E E ~ B i g ~ D a t a, ~ I E T ~ J o u r n a l) ~$
- Big Data:	1	(ICBDA)
- Advertising:	1	(WIFS)
- Internet of Things:	1	(IWCMC)
- Election:	1	$(2017 / 166)$

How to perform Approximate Arithmetic on HE?

1.234 * $0.689 * 2.194 * 0.917$ * $3.323 * 4.154 * 0.489 * 3.772=$?

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.
$1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772=4,355,296,408,921,213,975,719,328>2^{85}$.

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.
$1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772=4,355,296,408,921,213,975,719,328>2^{85}$.

Base Encoding [DGL+'15, CSCW'16, CLPX'17 (High-precision HE)]

- Express a real number as a (small) polynomial. e.g. (1.234) $\rightarrow\left(1+2 X^{-1}+3 X^{-2}+4 X^{-3}\right)$

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.
$1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772=4,355,296,408,921,213,975,719,328>2^{85}$.

Base Encoding [DGL+'15, CSCW'16, CLPX'17 (High-precision HE)]

- Express a real number as a (small) polynomial. e.g. (1.234) $\rightarrow\left(1+2 X^{-1}+3 X^{-2}+4 X^{-3}\right)$
- Exponential growth of Degree
- Trade-off between Precision \& Number of slots
- No Bootstrapping

How to perform Approximate Arithmetic on HE?

1.234 * $0.689 * 2.194 * 0.917$ * $3.323 * 4.154 * 0.489 * 3.772=$?

Bitwise Encryption

- 0.06 sec for (2-to-1) gate.
- 10 sec for (6-to-6) circuit.

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Bitwise Encryption

- 0.06 sec for (2-to-1) gate.
- 10 sec for (6-to-6) circuit.

75 Gates for an operation on two four-bit strings.

How many gates for
16-bit / 32-bit precision multiplication?

Homomorphic Encryption Schemes

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	$\mathrm{GF}\left(\mathrm{p}^{\mathrm{d}}\right)\left(\mathrm{Z}_{\mathrm{p}}\right)$	Polylog overhead (Amortized time \& Expansion rate)	Bootstrapping	HElib SEAL \qquad
Gentry-Sahai-Waters'13	$\mathrm{Z}, \mathrm{Z}[\mathrm{X}](\{0,1\})$	Beauy-: Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene’16,17	$\{0,1\},\left(\{0,1\}^{\mathrm{k}}\right)$	Evaluation with Bootstrapping. Latency.	Amortized time \& Expansion rate	FHEW TFHE

Homomorphic Encryption Schemes

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	$\mathrm{GF}\left(\mathrm{p}^{\mathrm{d}}\right)\left(\mathrm{Z}_{\mathrm{p}}\right)$	Polylog overhead (Amortized time \& Expansion rate)	Bootstrapping	HElib SEAL ...
Gentry-Sahai-Waters'13	$\mathrm{Z}, \mathrm{Z}[\mathrm{X}](\{0,1\})$	Beauty-: Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene’16,17	$\{0,1\},\left(\{0,1\}^{\mathrm{k}}\right)$	Evaluation with Bootstrapping. Latency.	Amortized time \& Expansion rate	FHEW TFHE
"Approximate Encryption" Cheon-Kim-Kim-Song'17 Cheon-Han-Kim-Kim-Song'18	Complex (Real) Numbers	Fixed-point Arithmetic. Polylog overhead.		HEAAN (慧 眼)

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)
$$

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)=850,226 * 10^{-6}=850 * 10^{-3}
$$

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)=850,226 * 10^{-6}=850 * 10^{-3}
$$

Idea 1. Every number contains an Approximation Error (between unknown true value).
Consider an RLWE error as part of it.

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)=850,226 * 10^{-6}=850 * 10^{-3}
$$

Idea 1. Every number contains an Approximation Error (between unknown true value).
Consider an RLWE error as part of it.

$$
\mathrm{ct}=\mathrm{Enc}(\mathrm{~m}) \text { if }[<\mathrm{ct}, \mathrm{sk}>]_{\mathrm{q}}=\mathrm{m}+\mathrm{e} \approx \mathrm{~m} .
$$

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)=850,226 * 10^{-6}=850 * 10^{-3}
$$

Idea 1. Every number contains an Approximation Error (between unknown true value).
Consider an RLWE error as part of it.

$$
\mathrm{ct}=\mathrm{Enc}(\mathrm{~m}) \text { if }[<\mathrm{ct}, \mathrm{sk}\rangle]_{\mathrm{q}}=\mathrm{m}+\mathrm{e} \approx \mathrm{~m} .
$$

Approximate HE: (1.234) \Rightarrow (scale by $\left.p=10^{4}\right) \Rightarrow 12,340$.

$$
\Rightarrow(\text { Encrypt }) \Rightarrow[<\mathrm{ct}, \mathrm{sk}\rangle]_{\mathrm{q}}=12,342 \approx 1.234 * 10^{4} .
$$

Approximate Homomorphic Encryption

Motivation: Imitate the approximate arithmetic on computer system.

$$
1.234 * 0.689=\left(1,234 * 10^{-3}\right) *\left(689 * 10^{-3}\right)=850,226 * 10^{-6}=850 * 10^{-3}
$$

Idea 2. Approximate Rounding is easy!

$$
\begin{aligned}
& <\mathrm{ct}, \mathrm{sk}>=\mathrm{m}(\bmod \mathrm{q}) \\
& \mathrm{ct} \mapsto \mathrm{ct}^{\prime}=\left\ulcorner\mathrm{p}^{-1} * \mathrm{ct}\right\lrcorner \\
& <\mathrm{ct}^{\prime}, \mathrm{sk}>\left(\bmod \mathrm{p}^{-1} \mathrm{q}\right) \approx \mathrm{p}^{-1} \mathrm{~m}
\end{aligned}
$$

How to perform Approximate Arithmetic on HE?

$1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772=$?

```
1.234
0.689
2.194
0.917
3.323
4.154
0.489
3.772
```


How to perform Approximate Arithmetic on HE?

$1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772=$?

1.234		12,340		12,337
0.689		6,890		6,893
2.194		21,940		21,941
0.917	-	9,170	-	9,175
3.323		33,230		33,225
4.154		41,540		41,543
0.489		4,890		4,892
3.772		37,720		37,718

How to perform Approximate Arithmetic on HE?

$1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772=$?

How to perform Approximate Arithmetic on HE?

1.234 * $0.689 * 2.194 * 0.917$ * $3.323 * 4.154 * 0.489 * 3.772=$?

8,499
20,125
138,021
18,451

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * $0.489 * 3.772=43.555$

How to perform Approximate Arithmetic on HE?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * $0.489 * 3.772=43.555$

Functionality of Approximate HE

Packing Technique

- $\mathrm{R}=\mathrm{Z}[\mathrm{X}] /\left(\Phi_{\mathrm{m}}(\mathrm{X})\right.$).
- $\Phi(X)=\prod_{i}\left(X-\zeta_{i}\right)$ where ζ_{i} 's are m-th roots of unity.
- Encoding map: from $\left(M_{i}\right)_{i}$ to $M(X)$ such that $M\left(\zeta_{i}\right)=M_{i}$

Functionality of Approximate HE

Packing Technique

- $R=Z[X] /\left(\Phi_{m}(X)\right)$.
- $\Phi(X)=\Pi_{i}\left(X-\zeta_{i}\right)$ where ζ_{i} 's are m-th roots of unity.
- Encoding map: from $\left(M_{i}\right)_{i}$ to $M(X)$ such that $M\left(\zeta_{i}\right)=M_{i}$

Rotation, Conjugation

- Evaluation of $\sigma(X)=X^{k}$ in $\operatorname{Gal}\left(K=Q[X] /\left(X^{N}+1\right) / Q\right)$.
- Based on the key-switching technique.

Functionality of Approximate HE

Packing Technique

- $R=Z[X] /\left(\Phi_{m}(X)\right)$.
- $\Phi(X)=\prod_{i}\left(X-\zeta_{i}\right)$ where ζ_{i} 's are m-th roots of unity.
- Encoding map: from $\left(M_{i}\right)_{i}$ to $M(X)$ such that $M\left(\zeta_{i}\right)=M_{i}$

Rotation, Conjugation

- Evaluation of $\sigma(X)=X^{k}$ in $\operatorname{Gal}\left(K=Q[X] /\left(X^{N}+1\right) / Q\right)$.
- Based on the key-switching technique.

Evaluation of Analytic Functions

- $\exp (z)$,
- z^{-1}

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit

- $M=<c t, s k>(\bmod q)$.
- Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit

- $\mathrm{M}=<\mathrm{ct}, \mathrm{sk}>(\bmod \mathrm{q})$.
- Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit
$=M=<c t, s k>(\bmod q) . \quad M \approx(q / 2 \pi) \sin \theta, \quad \theta=(2 \pi / q)<c t, s k>$.

- Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit
$=M=<c t, s k>(\bmod q) . \quad M \approx(q / 2 \pi) \sin \theta, \quad \theta=(2 \pi / q)<c t, s k>$.

- Goal: Represent modular reduction as a circuit over the complex numbers.

Evaluation of sine

- $\cos \theta=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2), \quad \sin \theta=2 \cos (\theta / 2) \sin (\theta / 2)$.

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit
$=M=<c t, s k>(\bmod q) . \quad M \approx(q / 2 \pi) \sin \theta, \quad \theta=(2 \pi / q)<c t, s k>$.

- Goal: Represent modular reduction as a circuit over the complex numbers.

Evaluation of sine

- $\cos \theta=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2), \quad \sin \theta=2 \cos (\theta / 2) \sin (\theta / 2)$.
- From $\left[-2 K \pi / 2^{r}, 2 K \pi / 2^{r}\right]$ to $[-2 K \pi, 2 K \pi]$.
- Linear Complexity for Modulus Reduction Operation!
- <ct',sk> $(\bmod Q) \approx M$

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P\&S Workshop'17, BMC Med Genomics'18 (in submission).
e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).
- (ongoing) ML based on the financial data with Bootstrapping.

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P\&S Workshop'17, BMC Med Genomics'18 (in submission).
e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).
- (ongoing) ML based on the financial data with Bootstrapping.

A Full-RNS Variant of Approx-HE

- Double-CRT (RNS+NTT) representation.
- Implementation without CRT composition or big-integer library.
- Based on the use of approximate basis \& approximate modulus switching.

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P\&S Workshop'17, BMC Med Genomics'18 (in submission).
e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).
- (ongoing) ML based on the financial data with Bootstrapping.

A Full-RNS Variant of Approx-HE

- Double-CRT (RNS+NTT) representation.
- Implementation without CRT composition or big-integer library.
- Based on the use of approximate basis \& approximate modulus switching.

Open problems??

Homomorphic Encryption Framework

Homomorphic Encryption Framework

Homomorphic Encryption Framework (Encryption)
$\operatorname{Enc}\left(m_{1}\right) \quad m_{1}$

$$
\stackrel{\bullet}{\mathrm{m}_{2}} \operatorname{Enc}\left(\mathrm{~m}_{2}\right)
$$

Homomorphic Encryption Framework (Addition)

Homomorphic Encryption Framework (Addition)

Homomorphic Encryption Framework (Addition)

Homomorphic Encryption Framework (Multiplication)

Enc $\left(m_{1}\right)^{\bullet}{ }^{\bullet} m_{1}$

$$
\stackrel{\bullet}{m_{2}} \operatorname{Enc}\left(m_{2}\right)
$$

Homomorphic Encryption Framework (Multiplication)

Homomorphic Encryption Framework (Multiplication)
$m_{3}=m_{1}{ }^{*} m_{2}$
$\operatorname{Enc}\left(m_{1}\right) * \operatorname{Enc}\left(m_{2}\right)$

Homomorphic Encryption Framework (Multiplication)
$m_{3}=m_{1}{ }^{*} m_{2}$
$\operatorname{Enc}\left(m_{1}\right) * \operatorname{Enc}\left(m_{2}\right)$
$\underset{\operatorname{Enc}\left(m_{1}\right)}{\bullet}{ }^{\bullet} \mathrm{m}_{1}$

$$
\stackrel{\bullet}{m_{2}} \cdot \operatorname{Enc}\left(m_{2}\right)
$$

Homomorphic Encryption Framework (Multiplication)
$m_{3}=m_{1}{ }^{*} m_{2}$

$$
\operatorname{Enc}\left(m_{1}\right) \bullet m_{1}
$$

$$
\stackrel{\bullet}{m_{2}} \cdot \operatorname{Enc}\left(m_{2}\right)
$$

Approximate Homomorphic Encryption

Approximate Homomorphic Encryption

Approximate Homomorphic Encryption

$$
\begin{aligned}
& \ldots \\
& m_{1}
\end{aligned} \cdots \cdots \cdots \cdot m_{2}
$$

Approximate Homomorphic Encryption (Encryption)

$$
\begin{gathered}
\mathrm{m}_{1}^{\prime}=\mathrm{m}_{1}+\mathrm{e}_{1} \\
\mathrm{~m}_{1}
\end{gathered}
$$

$$
\begin{aligned}
& m_{2} \\
& m_{2}^{\prime}=m_{2}+e_{2}
\end{aligned}
$$

Approximate Homomorphic Encryption (Operations)

Approximate Homomorphic Encryption (Operations)

Approximate Homomorphic Encryption (Operations)

Approximate Homomorphic Encryption (Operations)

$$
m_{1}+m_{2} \cdot m_{1}^{\prime}+m_{2}^{\prime}
$$

- m_{2} m_{2}^{\prime}

Approximate Homomorphic Encryption (Operations)

- $m_{1}{ }^{*} m_{2}$

$$
m_{1}+m_{2}, m_{1}^{\prime}+m_{2}^{\prime}
$$

$$
\begin{array}{lll}
m_{1}^{\prime} & & m_{2} \\
0 & m_{1}^{\prime} \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & &
\end{array}
$$

Approximate Homomorphic Encryption (Operations)

$$
\mathrm{m}_{1}^{\prime} * \mathrm{~m}_{2}^{\prime} \approx \mathrm{m}_{1}^{*} \mathrm{~m}_{2}
$$

- $m_{1}{ }^{*} m_{2}$

$$
m_{1}+m_{2}, m_{1}^{\prime}+m_{2}^{\prime}
$$

Approximate Homomorphic Encryption (Operations)

$\mathrm{m}_{1}{ }^{*} \mathrm{~m}_{2}{ }^{\prime}$

- $m_{1}{ }^{*} m_{2}$

$$
m_{1}+m_{2} \cdot m_{1}^{\prime}+m_{2}^{\prime}
$$

$$
\begin{gathered}
\mathrm{m}_{1}^{\prime} \\
\bullet \\
\bullet \\
{ }^{\bullet} \mathrm{m}_{1}
\end{gathered}
$$

- m_{2}
m_{2}^{\prime}

Approximate Homomorphic Encryption (Operations)

$m_{1}{ }^{*} m_{2}{ }^{\prime}$

