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Reduction of “Gap” between Real and Encrypted computations.

Datatypes and operations
§ Boolean Circuit (Bit Operation)
§ Integer Operations
§ Modular Arithmetic
§ Approximate Arithmetic (Fixed/Floating-point Operation)
§ Logical Operations (If & Else statement)
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How to perform Approximate Arithmetic on HE?
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Word Encryption
§ Represent a real number as an integer.

§ No Rounding operation is very expensive.

§ Bit size of message grows exponentially.

1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772 = 4,355,296,408,921,213,975,719,328 > 285.

Base Encoding [DGL+’15, CSCW’16, CLPX’17 (High-precision HE)]
§ Express a real number as a (small) polynomial. e.g. (1.234) → (1 + 2X-1 + 3X-2 + 4X-3)

§ Exponential growth of Degree

§ Trade-off between Precision & Number of slots

§ No Bootstrapping
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How to perform Approximate Arithmetic on HE?
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Bitwise Encryption
§ 0.06 sec for (2-to-1) gate.
§ 10 sec for (6-to-6) circuit.

75 Gates for an operation on
two four-bit strings.

How many gates for
16-bit / 32-bit precision multiplication?
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“Approximate Encryption”
Cheon-Kim-Kim-Song’17
Cheon-Han-Kim-Kim-Song’18

Complex (Real)
Numbers

Fixed-point 
Arithmetic.

Polylog overhead.

HEAAN
(慧眼)
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Approximate Homomorphic Encryption
Motivation: Imitate the approximate arithmetic on computer system.

1.234 * 0.689 = (1,234 * 10-3) * (689 * 10-3) = 850,226 * 10-6 = 850 * 10-3

Idea 2. Approximate Rounding is easy!

<ct, sk> = m (mod q)

ct ↦ ct’ =「p-1 * ct 」

<ct’, sk> (mod p-1 q) ≈ p-1 m
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Linear Bit size of Ciphertext Modulus: log q = O(depth * precision)
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Functionality of Approximate HE

Packing Technique

§ R=Z[X] / (Φm(X)).

§ Φ(X) = ∏i(X- ζi) where ζi’s are m-th roots of unity.

§ Encoding map: from (Mi)i to M(X) such that M(ζi) = Mi

Rotation, Conjugation

§ Evaluation of σ(X)=Xk in Gal( K=Q[X]/(XN+1) / Q ).

§ Based on the key-switching technique.

Evaluation of Analytic Functions

§ exp (z),

§ z-1
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Bootstrapping for the Approximate HE (EC’18)
Decryption circuit
§ M = <ct, sk> (mod q). M ≈ (q/2π) sin θ, θ = (2π/q) <ct,sk>.
§ Goal: Represent modular reduction as a circuit over the complex numbers.

Evaluation of sine
§ cos θ = cos2(θ/2) – sin2(θ/2), sinθ = 2 cos(θ/2) sin(θ/2).
§ From [-2Kπ/2r, 2Kπ/2r] to [-2K π, 2K π].
§ Linear Complexity for Modulus Reduction Operation!
§ <ct’,sk> (mod Q) ≈ M 
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Privacy-preserving Training of Logistic Regression Model
§ Kim-Song-Wang-Xia-Jiang, JMIR Med Inform’18
§ Kim-Song-Kim-Lee-Cheon, iDASH P&S Workshop’17, BMC Med Genomics’18 (in submission).

e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).
§ (ongoing) ML based on the financial data with Bootstrapping.

A Full-RNS Variant of Approx-HE
§ Double-CRT (RNS+NTT) representation.
§ Implementation without CRT composition or big-integer library.
§ Based on the use of approximate basis & approximate modulus switching.

Open problems??
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Approximate Homomorphic Encryption (Operations)

O

m2

m1

m1+m2

m1*m2

m2’

m1’+m2’

m1’

m1’*m2’

¼ m1’*m2’
≈ ¼ m1*m2


