MOTIVATION, CONSTRUCTION, APPLICATIONS

YONGSOO SONG

UCSD

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

Cryptography community has improved the Efficiency of HE system.

- Performance: Speed, Storage, Expansion rate, etc.
- Functionality: Key-switching, Rotation, Plaintext Space, etc.

What is the Next Goal?

"HE system can evaluate an arbitrary circuit in a polynomial time."

Cryptography community has improved the Efficiency of HE system.

- Performance: Speed, Storage, Expansion rate, etc.
- Functionality: Key-switching, Rotation, Plaintext Space, etc.

Reduction of "Gap" between Real and Encrypted computations.

Datatypes and operations

- Boolean Circuit (Bit Operation)
- Integer Operations
- Modular Arithmetic
- Approximate Arithmetic (Fixed/Floating-point Operation)
- Logical Operations (If & Else statement)

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	GF(p ^d) (Z _p)	Polylog overhead (Amortized time & Expansion rate)	Bootstrapping	HElib SEAL
Gentry-Sahai-Waters'13				
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene'16,17				

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	GF(p ^d) (Z _p)	Polylog overhead (Amortized time & Expansion rate)	Bootstrapping	HElib SEAL
Gentry-Sahai-Waters'13	Z, Z[X] ({0,1})	Beauty 😊	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene'16,17				

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	GF(p ^d) (Z _p)	Polylog overhead (Amortized time & Expansion rate)	Bootstrapping	HElib SEAL
Gentry-Sahai-Waters'13	Z, Z[X] ({0,1})	Beauty ☺ Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene'16,17	{0,1}, ({0,1}*)	Evaluation with Bootstrapping. Latency.	Amortized time & Expansion rate	FHEW TFHE

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

 Machine Learning: 	11	(2018/233,202,139,074, 2017/979,715. SSCI, IEEE Access, IEEE Journal, ICCV, SMARTCOMP)
	•	
 Neural Network: 	2	(2018/073, 2017/1114)
 Genomic Data: 	7	(2017/955,770,294,228. EUSIPCO, SMARTCOMP, IEEE Journal)
 Health Data: 	2	(IBM Journal, IEEE Journal)
 Biometric Data: 	2	(IEEE Access, IEEE Conference)
 Energy Management: 	3	(2017/1212. IEEE Big Data, IET Journal)
 Big Data: 	1	(ICBDA)
 Advertising: 	1	(WIFS)
 Internet of Things: 	1	(IWCMC)
 Election: 	1	(2017/166)

Application Researches of HE (2017~2018)

"Homomorphic Encryption" in ePrint and IEEE Xplore

• Machine Learning:	11	(2018/233,202,139,074, 2017/979,715.
		SSCI, IEEE Access, IEEE Journal, ICCV, SMARTCOMP)
 Neural Network: 	2	(2018/073, 2017/1114)
 Genomic Data: 	7	(2017/955,770,294,228. EUSIPCO, SMARTCOMP, IEEE Journal)
 Health Data: 	2	(IBM Journal, IEEE Journal)
 Biometric Data: 	2	(IEEE Access, IEEE Conference)
 Energy Management: 	3	(2017/1212. IEEE Big Data, IET Journal)
 Big Data: 	1	(ICBDA)
 Advertising: 	1	(WIFS)
 Internet of Things: 	1	(IWCMC)
 Election: 	1	(2017/166)

```
How to perform Approximate Arithmetic on HE?
```

```
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?
```

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.

```
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?
```

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.

1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772 = 4,355,296,408,921,213,975,719,328 > 2⁸⁵.

```
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?
```

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.

1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772 = 4,355,296,408,921,213,975,719,328 > 2⁸⁵.

Base Encoding [DGL+'15, CSCW'16, CLPX'17 (High-precision HE)]

• Express a real number as a (small) polynomial. e.g. $(1.234) \rightarrow (1 + 2X^{-1} + 3X^{-2} + 4X^{-3})$

```
1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?
```

Word Encryption

- Represent a real number as an integer.
- No Rounding operation is very expensive.
- Bit size of message grows exponentially.

1,234 * 689 * 2,194 * 917 * 3,323 * 4,154 * 489 * 3,772 = 4,355,296,408,921,213,975,719,328 > 2⁸⁵.

Base Encoding [DGL+'15, CSCW'16, CLPX'17 (High-precision HE)]

- Express a real number as a (small) polynomial. e.g. $(1.234) \rightarrow (1 + 2X^{-1} + 3X^{-2} + 4X^{-3})$
- Exponential growth of Degree
- Trade-off between Precision & Number of slots
- No Bootstrapping

Bitwise Encryption

- 0.06 sec for (2-to-1) gate.
- 10 sec for (6-to-6) circuit.

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Bitwise Encryption

- 0.06 sec for (2-to-1) gate.
- 10 sec for (6-to-6) circuit.

75 Gates for an operation on two four-bit strings.

How many gates for 16-bit / 32-bit precision multiplication?

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	GF(p ^d) (Z _p)	Polylog overhead (Amortized time & Expansion rate)	Bootstrapping	HElib SEAL
Gentry-Sahai-Waters'13	Z, Z[X] ({0,1})	Beauty ☺ Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene'16,17	{0,1}, ({0,1} ^k)	Evaluation with Bootstrapping. Latency.	Amortized time & Expansion rate	FHEW TFHE

Scheme	Plaintext Slot	Good	Bad	Library
"Word Encryption" Brakerski-Gentry-Vaikuntanathan'12 Gentry-Halevi-Smart'12a,b,c Brakerski'12, Fan-Vercauteren'12 Halevi-Shoup'13,14,15	GF(p ^d) (Z _p)	Polylog overhead (Amortized time & Expansion rate)	Bootstrapping	HElib SEAL
Gentry-Sahai-Waters'13	Z, Z[X] ({0,1})	Beauty ☺ Toolkit for FHEW	Inefficient	
"Bitwise Encryption" Ducas-Micciancio'15 Chillotti-Gama-Georgieva-Izabachene'16,17	{0,1}, ({0,1} ^k)	Evaluation with Bootstrapping. Latency.	Amortized time & Expansion rate	FHEW TFHE
"Approximate Encryption" Cheon-Kim-Kim- <mark>Song</mark> '17 Cheon-Han-Kim-Kim- <mark>Song</mark> '18	Complex (Real) Numbers	Fixed-point Arithmetic. Polylog overhead.		HEAAN (慧 眼)

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3})$

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3}) = 850,226 * 10^{-6} = 850 * 10^{-3}$

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3}) = 850,226 * 10^{-6} = 850 * 10^{-3}$

Idea 1. Every number contains an Approximation Error (between unknown true value). Consider an RLWE error as part of it.

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3}) = 850,226 * 10^{-6} = 850 * 10^{-3}$

Idea 1. Every number contains an Approximation Error (between unknown true value). Consider an RLWE error as part of it.

ct = Enc (m) if $[\langle ct, sk \rangle]_a = m + e \approx m$.

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3}) = 850,226 * 10^{-6} = 850 * 10^{-3}$

Idea 1. Every number contains an Approximation Error (between unknown true value). Consider an RLWE error as part of it.

ct = Enc (m) if $[\langle ct, sk \rangle]_a = m + e \approx m$.

Approximate HE: (1.234) \Rightarrow (scale by p=10⁴) \Rightarrow 12,340. \Rightarrow (Encrypt) \Rightarrow [<ct,sk>]_q = 12,342 \approx 1.234 * 10⁴.

Motivation: Imitate the approximate arithmetic on computer system.

 $1.234 * 0.689 = (1,234 * 10^{-3}) * (689 * 10^{-3}) = 850,226 * 10^{-6} = 850 * 10^{-3}$

Idea 2. Approximate Rounding is easy!

<ct, sk> = m (mod q) ct \mapsto ct' = $\lceil p^{-1} * ct \rfloor$ <ct', sk> (mod $p^{-1}q$) $\approx p^{-1}m$

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

1.234 * 0.689 * 2.194 * 0.917 * 3.323 * 4.154 * 0.489 * 3.772 = ?

Res = 43.555

Functionality of Approximate HE

Packing Technique

- R=Z[X] / (Φ_m(X)).
- $\Phi(X) = \prod_i (X \zeta_i)$ where ζ_i 's are m-th roots of unity.
- Encoding map: from $(M_i)_i$ to M(X) such that $M(\zeta_i) = M_i$

Functionality of Approximate HE

Packing Technique

- R=Z[X] / (Φ_m(X)).
- $\Phi(X) = \prod_i (X \zeta_i)$ where ζ_i 's are m-th roots of unity.
- Encoding map: from $(M_i)_i$ to M(X) such that $M(\zeta_i) = M_i$

Rotation, Conjugation

- Evaluation of $\sigma(X)=X^k$ in Gal(K=Q[X]/(X^N+1) / Q).
- Based on the key-switching technique.

Functionality of Approximate HE

Packing Technique

- R=Z[X] / (Φ_m(X)).
- $\Phi(X) = \prod_i (X \zeta_i)$ where ζ_i 's are m-th roots of unity.
- Encoding map: from $(M_i)_i$ to M(X) such that $M(\zeta_i) = M_i$

Rotation, Conjugation

- Evaluation of $\sigma(X)=X^k$ in Gal(K=Q[X]/(X^N+1) / Q).
- Based on the key-switching technique.

Evaluation of Analytic Functions

exp (z),

Z⁻¹

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit

- M = <ct, sk> (mod q).
- Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18)

Decryption circuit

- M = <ct, sk> (mod q).
- Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18) Decryption circuit

• $M = \langle ct, sk \rangle \pmod{q}$. $M \approx (q/2\pi) \sin \theta$, $\theta = (2\pi/q) \langle ct, sk \rangle$.

• Goal: Represent modular reduction as a circuit over the complex numbers.

Bootstrapping for the Approximate HE (EC'18) Decryption circuit

• $M = \langle ct, sk \rangle \pmod{q}$. $M \approx (q/2\pi) \sin \theta$, $\theta = (2\pi/q) \langle ct, sk \rangle$.

Goal: Represent modular reduction as a circuit over the complex numbers.

Evaluation of sine

• $\cos \theta = \cos^2(\theta/2) - \sin^2(\theta/2)$,

 $\sin\theta = 2\cos(\theta/2)\sin(\theta/2)$.

Bootstrapping for the Approximate HE (EC'18) Decryption circuit

• M = <ct, sk> (mod q). M \approx (q/2 π) sin θ , θ = (2 π /q) <ct, sk>.

Goal: Represent modular reduction as a circuit over the complex numbers.

Evaluation of sine

- $\cos \theta = \cos^2(\theta/2) \sin^2(\theta/2)$, $\sin \theta = 2 \cos(\theta/2) \sin(\theta/2)$.
- From [-2Kπ/2^r, 2Kπ/2^r] to [-2K π, 2K π].
- Linear Complexity for Modulus Reduction Operation!
- <ct',sk> (mod Q) ≈ M

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P&S Workshop'17, BMC Med Genomics'18 (in submission).

e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).

• (ongoing) ML based on the financial data with Bootstrapping.

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P&S Workshop'17, BMC Med Genomics'18 (in submission).

e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).

• (ongoing) ML based on the financial data with Bootstrapping.

A Full-RNS Variant of Approx-HE

- Double-CRT (RNS+NTT) representation.
- Implementation without CRT composition or big-integer library.
- Based on the use of approximate basis & approximate modulus switching.

Following Work

Privacy-preserving Training of Logistic Regression Model

- Kim-Song-Wang-Xia-Jiang, JMIR Med Inform'18
- Kim-Song-Kim-Lee-Cheon, iDASH P&S Workshop'17, BMC Med Genomics'18 (in submission).

e.g. Six minutes to obtain a LR model from dataset of size 1579 * (18+1).

• (ongoing) ML based on the financial data with Bootstrapping.

A Full-RNS Variant of Approx-HE

- Double-CRT (RNS+NTT) representation.
- Implementation without CRT composition or big-integer library.
- Based on the use of approximate basis & approximate modulus switching.

Open problems??

Homomorphic Encryption Framework

٠	٠	٠	•	٠	•	•	•	٠	٠	•	٠	•	٠	٠	•	٠	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	•
٠	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠
٠	٠	٠	•	•	•	•	٠	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	•	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	٠	•
٠	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	٠	٠
٠	•	٠	•	٠	•	٠	•	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•
•	•	•	•	•	ullet	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ullet	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	٠)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Homomorphic Encryption Framework

٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٠	•	٠	٠	٠	•	•	•	٠	•	•	٠	٠	•	٠	٠	•	•	٠	•
٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•	٠	•	٠	٠	•	•	٠	٠	•
																		m																	
٠	•	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٠	•	m ₁	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	٠	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•
•	•	٠	•	•	•	•	٠	•	٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	•	•	•	٠	•	•	•	٠	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ľ	m ₂	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Homomorphic Encryption Framework (Encryption)

Homomorphic Encryption Framework (Addition)

Homomorphic Encryption Framework (Addition)

Homomorphic Encryption Framework (Addition)

•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	٠	•	•	•	•	•	٠	٠	•	•	٠	٠	٠	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	٠	٠	•	٠	•	٠	•	•	•	•	٠	•	٠	٠	•	•	٠	٠	•	•	٠
•	•	٠	•	•	•	•	•	٠	٠	•	•	•	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	m	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	En	c(r	n₁)	•	•	m ₁	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	• 1/	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	٠
•	•	•	•	•														•											_						
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	• r	m ₂	Ē	nc	:(m	1 ₂)	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•									٠																	
•	•	٠	•	•	•	•	•	٠	٠	•	•	•	נ	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•			₃ = I	m_1	*n	ו ₂	•	•	٠	•	•	•	•					•									•	•	•	•	•	•	•	•	•
•	•		٠	•	•	•	•					٠	•	•	٠	٠	•	٠	•	•	•	•	•	٠	•	•	٠	٠	•	٠	•	•	•	•	•
٠	•	•	•	F	ncl	m	_)*	۴Fr	าต(m.)	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	1,	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	٠	•	•	•	• En	c(r	n₁)	•	•	m ₁	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	•	٠	•	•	•	•	•	•	٠	•	•	•	٠	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	•	•	•	٠
•	٠	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	•	٠	٠	•	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•		ullet																		•	•	ullet	•	•
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	ľ	m ₂	Ē	nc	:(m	ו ₂)	•	•	•	•	•	•
•	٠	٠	•	•	٠	•	•	٠	٠	•	•	•	•	٠	•	•	٠	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠
•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		٠	•		•							•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	Ο	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	m	3 = I	m_1	*n	n_2	•	•	٠	•	•	•	•	•				•									•	٠	٠	٠	•	•	٠	٠	٠
•	•	•	٠	٠	•	•	•	•	•	٠	•	٠	•	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	٠	•	•	٠	٠
•	٠	•	•	E	ncl	(m	_)*	۴Er	าต(m-)	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	٠
•	•	٠	•	•	•	•	1	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	-	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	• End	c(r	n₁)	•	•	111 ₁	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	•	•	•	•	•	٠	٠	•	٠	٠	•	•	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	•	•	•	٠	•	٠
•	٠	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	ullet	•	٠	٠	•	•	•	•	ullet	٠	•	•						•													٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	ľ	m ₂	Ē	nc	:(m	י ₂)	•	•	•	•	•	•
•	٠	٠	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	٠	٠	•	•	•	•	٠	•	٠	•	•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	٠	•
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•		•						•	•	•	•	•	•	٠	•	•	•	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	О.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Approximate Homomorphic Encryption

٠	•	٠	•	•	•	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	٠	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	٠	•	٠	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	٠	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•
•												-	`																						

Approximate Homomorphic Encryption

٠	٠	•	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	•	٠	•	٠	٠	•	٠	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•
٠	٠	٠	•	•	•	٠	•	٠	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	٠	٠	•	٠	٠	•	٠	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•
٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
۰	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Approximate Homomorphic Encryption

•	•	•	•	•	•	•	٠	•	٠	٠	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	٠	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	m	2•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	ŗ	n_1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	٠	٠	•	•)	•	•	٠	•	٠	•	٠	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•

Approximate Homomorphic Encryption (Encryption)

٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
۰	٠	•	•	٠	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	٠	•	•	•	٠	•
٠	٠	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	•	٠	m)₁″=	=m	₁ +	e₁	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	٠	•
٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	T	•	•	٩	m	<u>2</u> •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	n	n_1	•	•	•	٠	m	2 '=	m	2 + €	2 ²	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	٠	•	٠	•	•	•		-	`							•													•	•	•
٠	•	•	•	•	•	•	٠	•	•	•	٠) •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
۰	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	۰	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•
٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•
٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•
٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	٠	٠	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	٠	•	•	•	•	•	•	m	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	m	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
														-						•															
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	r	n_1	•	٠	٠	•	m	' 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•
												_	_							٠															
•	٠	•	•	•	•	•	•	•	•	•	•)	•	•	•	٠	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•

•	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
٠	٠	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	٠	•	٠	•	•	•	•	•	٠	٠
•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	m,	+n	1 -	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•2	• I	m_1	′+r	n_2	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	٠	٠	•	•	٠	•	•	•	m	, ,	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	'1 •	•	•	•	•	•	m	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	r	n_1	•	•	•	•	m	, 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•																				_														
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•																																		

٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•	•	•	•	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	٠	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•
•	•	•	٠	٠	٠	٠	•	•	•	ę	m	<mark>*</mark> ۱	m ₂	•	٠	•	•	٠	•	•	٠	٠	•	٠	٠	•	٠	٠	•	•	٠	٠	٠	٠	٠
•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	•
•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	m₁	+'n] _	•	٠	•	•	•	•	•	٠	•	•	٠	•	•	•	•
•	٠	•	•	٠	•	•																													
•	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	•	•	٠	•	•	٠	•	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	•	٠	•	٠
•	٠	•	٠	٠	٠	٠	•	•	•	٠	•	•	m	,	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	•	•	•	•	-	•	•	•	•	•	•	•	m	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	•		•	•	٠	٠	•	•	٠	•	•	٠	•	•	•	٠	٠	٠	٠
•	•	•	٠	٠	٠	٠	•	•	•	٠	•	•	m	/•r	n ₁		•	•	•	m	'	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	٠	٠	٠	•	•	•	٠	•	٠	\•/	•		•	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•				•	•		•		•		•	•	•		•			•	•	•			•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	О.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	٠	•	m_1	′*I	m ₂	′≈	m	[*] m	<u>)</u>	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	•	•	•	•	• •	٠	•	٠	٠	•	٠	•	•	•	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	٠
•	•	•	٠	٠	٠	٠	٠	•	•	•	m_1^*	m_2	•	٠	٠	•	٠	٠	•	•	•	•	•	•	٠	٠	٠	•	•	٠	•	•	•	•
•	•	٠	•	٠	•	٠	•	•	•	•	• •	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	•
•	•	٠	٠	٠	٠	٠	٠	•	٠		• •	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	٠	•	٠	•	•	٠	•	•	•	•	• •	•	•	٠	٠	• r	n.	+'n	า.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	٠	•	•	٠	•	•••	•	•	٠	•	•	•1	•	•2	• 1	n_1	′+r	n ₂ ′	•	•	•	٠	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	٠	٠	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	٠	٠	•	٠	•	• •	m	,	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•
•	٠	•	٠	٠	•	٠	٠	•	٠	•	• •	m	'1	٠	•	٠	•	•	m	2	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	-	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	•	٠	•	•	٠	•	• •	•	r	n ₁	٠	•		•	m	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	٠	٠	٠	•	٠	•	• •		•	<u> </u>	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	• •	V	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	• •	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	٠	•	m_1	′*I	m ₂	' •											•															
•	٠	•	•	٠	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	٠	٠	•	•	•	m₁	⊦*r	n_2	•	•	•	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	٠	•	٠
•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	•	٠	٠	٠	٠
•	•				•	•	•		•	<u>``</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	•	٠	•	•	•	٠	•	•	•	•	m₁	+n	າ₂ ●	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	m_1	′+r	m ₂ '	•	•	•	٠	٠	•	•	•	٠	٠	٠
•	•																			٠															
•	•	•	•	٠	٠	٠	٠	•	٠	•	•	•	m	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	'1 •	•	•	•	•	•	m ₂	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	•	•	•	•	•	•	A.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	r	n_1	•	•	•	•	m	י 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	.()	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	٠	•	•	m_1	'*m ₂ '·····	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	• • • • • • • • • • • • • • • • • • • •	٠	٠	•	٠	•	•	•	•	•
•	•	•	٠	٠	٠	٠	• m ₁ *m ₂	٠	٠	•	•	•	•	•	•	•
•	•	•	٠	•	٠	٠		•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	٠	•		٠	٠	•	•	•	•	•	•	•
•	•	•	٠	•	•	٠	m,+m,	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	$m_1 + m_2 m_1' + m_2'$	٠	•	•	•	•	•	•	•	•
•	•	•														
•	•	•	٠	•	٠	•	$m_1' m_2'$ $m_1' m_2' m_2'$	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	m_2	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	$\frac{1}{4} m_1' m_2'$	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	$\approx \frac{1}{4} m_1^* m_2$, m_1 , m_2' , m_2'	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•