Approximate Homomorphic Encryption

- Construction & Bootstrapping

Yongsoo Song, UC San Diego

ECC 2018, Osaka

Approximate Homomorphic Encryption

- Construction & Bootstrapping

Yongsoo Song, UC San Diego

Microsoft Research, Redmond

ECC 2018, Osaka

Table of Contents

Background

- Construction
 - [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

- Bootstrapping
 - [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

Related Works

Table of Contents

Background

- Construction
 - [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

HEAAN (慧眼)

- Bootstrapping
 - [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

Related Works

Advanced Cryptography

Protecting Computation, not just data

Advanced Cryptography

Protecting Computation, not just data

- Differential Privacy
- Zero-knowledge Proof
- Multiparty Computation
- Attribute Based Encryption

Advanced Cryptography

Protecting Computation, not just data

- Differential Privacy
- Zero-knowledge Proof
- Multiparty Computation
- Attribute Based Encryption
- ...
- Homomorphic Encryption (2009~)

Homomorphic Encryption

DB-k

Homomorphic Encryption

Homomorphic Encryption

Multi-Party Computation

Comparison: HE vs MPC

	Homomorphic Encryption	Multi-Party Computation
Re-usability	One-time encryption No further interaction	Single-use encryption Interaction between parties each time
Model		
Speed		

Comparison: HE vs MPC

	Homomorphic Encryption	Multi-Party Computation	
Re-usability	One-time encryption Single-use encryption		
	No further interaction	Interaction between parties each time	
	Semi-honest Cloud	Semi-honest parties	
Model	+ Trusted SK Owner	without collusion	
Speed			

Comparison: HE vs MPC

	Homomorphic Encryption	Multi-Party Computation	
Re-usability	One-time encryption	Single-use encryption	
Ke-usability	No further interaction	Interaction between parties each time	
Model	Semi-honest Cloud	Semi-honest parties	
Modet	+ Trusted SK Owner	without collusion	
C n a a d	Slow in computation	Slow in communication	
Speed	(but can speed-up using SIMD)	(due to large circuit to be exchanged)	

Summary of Progresses

- **2009-10:** Plausibility
 - [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
 - [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours

Summary of Progresses

- 2009-10: Plausibility
 - [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
 - [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours
- 2013-15: Efficiency
 - [HS14] IBM's open-source library HElib
 - Implementation of Brakerski-Gentry-Vaikuntanathan (BGV) scheme
 - The same 30K-gate circuit in 4 minutes

Summary of Progresses

- 2009-10: Plausibility
 - [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
 - [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours
- 2013-15: Efficiency
 - [HS14] IBM's open-source library HElib
 - Implementation of Brakerski-Gentry-Vaikuntanathan (BGV) scheme
 - The same 30K-gate circuit in 4 minutes
- 2015-today: Usability
 - Various schemes with different advantages
 - Simpler and faster implementations
 - Real-world tasks: Big data analysis, Machine learning
 - Standardization meetings (2017~)
 - iDASH competitions (2014~)

4 Big Takeaways from Satya Nadella's Talk at **Microsoft Build**

By JONATHAN VANIAN May 7, 2018

Microsoft CEO Satya Nadella is trying to distinguish the business technology giant from its technology brethren by focusing on digital privacy.

You May Like

Discover The Six 2018 **Luxury Cars So Cool It's Incredible They Cost Under**

by Fageo | Sponsored

Meghan Markle's Affordable Cashmere Sweater Is Back in Stock

by T+L - Style | Sponsored

4 Big Takeaways from Satya Nadella's Talk at Microsoft Build

One way Nadella is attempting to convince businesses that Microsoft (MSFT, +3.63%) can improve its AI technology while protecting user data is by promoting a computing technique called homomorphic encryption. Although still a research-heavy technique, homomorphic encryption would presumably let companies analyze and crunch encrypted data without needing to unscramble that information.

Nadella is pitching the technique as a way for companies to "learn, train on encrypted data." The executive didn't explain how far along Microsoft is on advancing the encryption technique, but the fact that he mentioned the wonky terms shows that the company is touting user privacy as a selling point for its Azure cloud business.

4 Big Takeaways from Satya Nadella's Talk at Microsoft Build

One way Nadella is attempting to convince businesses that Microsoft (MSFT, +3.63%) can improve its AI technology while protecting user data is by promoting a computing technique called homomorphic encryption. Although still a research-heavy technique, homomorphic encryption would presumably let companies analyze and crunch encrypted data without needing to unscramble that information.

Nadella is pitching the technique as a way for companies to "learn, train on encrypted data." The executive didn't explain how far along Microsoft is on advancing the encryption technique, but the fact that he mentioned the wonky terms shows that the company is touting user privacy as a selling point for its Azure cloud business.

Туре	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext			
Operation			
Library			

Туре	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext	Finite Field Packing		
Operation	Addition, Multiplication		
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)		

Туре	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext	Finite Field Packing	Binary string	
Operation	Addition, Multiplication	Look-up table & bootstrapping	
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)	TFHE (inpher, gemalto, etc.)	

Туре	Classical HE Fast Bootstrapping		Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV		
Plaintext	Finite Field Packing Binary string		Real/Complex numbers Packing
Operation	Addition, Multiplication	Look-up table & bootstrapping	Fixed-point Arithmetic
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)	TFHE (inpher, gemalto, etc.)	HEAAN (SNU)

iDASH Security & Privacy Workshop

An interdisciplinary challenge on genomic privacy research

- Motivated by real world biomedical applications
- Participation of privacy technology experts (academia and industry)
- Developed practical yet rigorous solutions for privacy preserving genomic data sharing and analysis
- Reported in the media (e.g., Nature News, GenomeWeb)

iDASH 2017 – Logistic Regression Model Training

- A machine learning model to predict the disease
- 1500 records + 18 features for training

iDASH 2017 – Logistic Regression Model Training

- A machine learning model to predict the disease
- 1500 records + 18 features for training

Teams	AUC	Secure learning		Overall time	
	0.7136	Time (mins)	Memory (MB)	(mins)	
SNU	0.6934	10.250	2775.333	10.360	
CEA LIST	0.6930	2206.057	238.255	2207.363	
KU Leuven	0.6722	155.695	7266.727	160.912	
EPFL	0.6584	15.089	1498.513	16.739	
MSR	0.6574	385.021	26299.344	396.390	
Waseda*	0.7154	2.077	7635.600	5.332	
Saarland**	N/A	48.356	29752.527	57.344	

^{*} Interactive mechanism, no complete guarantee on 80-bit security at "analyst" side

iDASH 2018 – Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Repeat logistic regression *n* times

iDASH 2018 – Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Team	Submission	Schemes	Time (mins)	Memory (MB)	Accuracy
A*FHE	A*FHE 1	- HEAAN	922.48	3,777	0.999
A FHE	A*FHE 2	TEAAN	1,632.97	4,093	0.905
Chimera	Version 1	TFHE+HEAAN	201.73	10,375	0.993
Chimera	Version 2	(Chimera)	215.95	15,166	0.35
Delft Blue	Delft Blue	HEAAN	1,844.82	10,814	0.969
LICCD	Log Reg	HEAAN	1.66	14,901	0.993
UCSD	Lin Reg	pkg: RNS HEAAN	0.42	3,387	0.989
Decelited by	Log Reg	HEAAN	3.80	10,230	0.993
Duality Inc	Chi2 test	pkg: PALISADE	0.09	1,512	0.983
CNILI	SNU 1		52.49	15,204	0.984
SNU	SNU 2	- HEAAN	52.37	15,177	0.988
IBM	IBM-Complex	HEAAN	23.35	8,651	0.911
	IBM- Real	pkg: HEllb	52.65	15,613	0.526

iDASH 2018 – Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Team	Submission	Schemes	Time (mins)	Memory (MB)	Accuracy
A*FHE	A*FHE 1	- HEAAN	922.48	3,777	0.999
A FILE	A*FHE 2	ПЕААІ	1,632.97	4,093	0.905
Chimera	Version 1	TFHE+HEAAN	201.73	10,375	0.993
Cililiera	Version 2	(Chimera)	215.95	15,166	0.35
Delft Blue	Delft Blue	HEAAN	1,844.82	10,814	0.969
UCSD	Log Reg	HEAAN	1.66	14,901	0.993
UCSD	Lin Reg	pkg: RNS HEAAN	0.42	3,387	0.989
Desalitate Inc.	Log Reg	HEAAN	3.80	10,230	0.993
Duality Inc	Chi2 test	pkg: PALISADE	0.09	1,512	0.983
SNU	SNU 1	- HEAAN	52.49	15,204	0.984
SINU	SNU 2	ПЕААІ	52.37	15,177	0.988
IBM	IBM-Complex	_HEAAN	23.35	8,651	0.911
	IBM- Real	pkg: HEllb	52.65	15,613	0.526

Table of Contents

Background

Construction

■ [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

Bootstrapping

• [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

Related Works

Numerical Representation

Encode m into an integer $m \approx px$ for a scaling factor p. $\sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^3$

Numerical Representation

Encode m into an integer $m \approx px$ for a scaling factor p. $\sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^3$

Fixed-Point Multiplication

Compute $m = m_1 m_2$ and extract its significant digits $m' \approx p^{-1} \cdot m$

$$1.234 \times 5.678 = (1234 \cdot 10^{-3}) \times (5678 \cdot 10^{-3}) = 7006652 \cdot 10^{-6} \rightarrow 7007 \cdot 10^{-3} = 7.007$$

Numerical Representation

Encode m into an integer $m \approx px$ for a scaling factor p. $\sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^3$

Fixed-Point Multiplication

Compute $m = m_1 m_2$ and extract its significant digits $m' \approx p^{-1} \cdot m$ $1.234 \times 5.678 = (1234 \cdot 10^{-3}) \times (5678 \cdot 10^{-3}) = 7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3} = 7.007$

■ LWE problem (Regev, 2005)

 (b, \vec{a}) such that $\langle (b, \vec{a}), (1, \vec{s}) \rangle = e \pmod{q}$

Numerical Representation

Encode m into an integer $m \approx px$ for a scaling factor p. $\sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^3$

Fixed-Point Multiplication

Compute $m = m_1 m_2$ and extract its significant digits $m' \approx p^{-1} \cdot m$

$$1.234 \times 5.678 = (1234 \cdot 10^{-3}) \times (5678 \cdot 10^{-3}) = 7006652 \cdot 10^{-6} \rightarrow 7007 \cdot 10^{-3} = 7.007$$

■ LWE problem (Regev, 2005)

$$(b, \vec{a})$$
 such that $\langle (b, \vec{a}), (1, \vec{s}) \rangle = e \pmod{q}$

Previous HE

$$ct = Enc_{sk}(m),$$
 $\langle ct, sk \rangle = \frac{q}{t}m + e \pmod{q}$

Modulo t plaintext vs Rounding operation

HEAAN

A New Message Encoding

ct =
$$\operatorname{Enc}_{\operatorname{sk}}(m)$$
, $\langle \operatorname{ct}, \operatorname{sk} \rangle = pm + e \pmod{q}$
Consider e as part of approximation error

A New Message Encoding

$$ct = Enc_{sk}(m), \langle ct, sk \rangle = pm + e \pmod{q}$$

Consider e as part of approximation error

Input:
$$\mu_1 \approx pm_1$$
, $\mu_2 \approx pm_2$

Addition:
$$\mu_1 + \mu_2 \approx p \cdot (m_1 + m_2)$$

$$\mu_2 = pm_2 + e_2$$

A New Message Encoding

$$ct = Enc_{sk}(m), \langle ct, sk \rangle = pm + e \pmod{q}$$

Consider e as part of approximation error

Input:
$$\mu_1 \approx pm_1$$
, $\mu_2 \approx pm_2$

Addition:
$$\mu_1 + \mu_2 \approx p \cdot (m_1 + m_2)$$

Multiplication:
$$\mu = \mu_1 \mu_2 \approx p^2 \cdot m_1 m_2$$

A New Message Encoding

$$ct = Enc_{sk}(m), \langle ct, sk \rangle = pm + e \pmod{q}$$

Consider *e* as part of approximation error

Input:
$$\mu_1 \approx pm_1$$
, $\mu_2 \approx pm_2$

Addition:
$$\mu_1 + \mu_2 \approx p \cdot (m_1 + m_2)$$

Multiplication:
$$\mu = \mu_1 \mu_2 \approx p^2 \cdot m_1 m_2$$

Rounding:
$$\mu' \approx p^{-1} \cdot \mu \approx p \cdot m_1 m_2$$

A New Message Encoding

$$ct = Enc_{sk}(m), \langle ct, sk \rangle = pm + e \pmod{q}$$

Consider e as part of approximation error

Input:
$$\mu_1 \approx pm_1$$
, $\mu_2 \approx pm_2$

Addition:
$$\mu_1 + \mu_2 \approx p \cdot (m_1 + m_2)$$

Multiplication:
$$\mu = \mu_1 \mu_2 \approx p^2 \cdot m_1 m_2$$

Rounding:
$$\mu' \approx p^{-1} \cdot \mu \approx p \cdot m_1 m_2$$

- Support for the (approximate) fixed-point arithmetic!
- Leveled HE : $q = p^L$

• Construction over the ring $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = R \pmod{q}$

- Construction over the ring $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = R \pmod{q}$
- Packing Technique:
 - A single ciphertext can encrypt a vector of plaintext values $z=(z_1,z_2,...,z_\ell)$
 - Parallel computation in a SIMD manner $z \otimes w = (z_1w_1, z_2w_2, ..., z_\ell w_\ell)$

- Construction over the ring $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = R \pmod{q}$
- Packing Technique:
 - A single ciphertext can encrypt a vector of plaintext values $z=(z_1,z_2,...,z_\ell)$
 - Parallel computation in a SIMD manner $z \otimes w = (z_1w_1, z_2w_2, ..., z_\ell w_\ell)$
- RLWE-based HEAAN
 - A ciphertext can encrypt a polynomial $m(X) \in R$
 - Observation: $X^n + 1 = (X \zeta_1)(X \zeta_1^{-1})(X \zeta_2)(X \zeta_2^{-1}) \dots (X \zeta_{n/2})(X \zeta_{n/2}^{-1})$

- Construction over the ring $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = R \pmod{q}$
- Packing Technique:
 - A single ciphertext can encrypt a vector of plaintext values $z=(z_1,z_2,...,z_\ell)$
 - Parallel computation in a SIMD manner $z \otimes w = (z_1w_1, z_2w_2, ..., z_\ell w_\ell)$
- RLWE-based HEAAN
 - A ciphertext can encrypt a polynomial $m(X) \in R$
 - Observation: $X^n + 1 = (X \zeta_1)(X \zeta_1^{-1})(X \zeta_2)(X \zeta_2^{-1}) \dots (X \zeta_{n/2})(X \zeta_{n/2}^{-1})$
 - Decoding/Encoding function

$$R = \mathbb{Z}[X]/(X^n + 1) \subseteq \mathbb{R}[X]/(X^n + 1) \rightarrow \mathbb{C}^{n/2}$$

$$m(X) \mapsto z = (z_1, \dots, z_{n/2}), \ z_i = \mu(\zeta_i)$$

- Construction over the ring $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = R \pmod{q}$
- Packing Technique:
 - A single ciphertext can encrypt a vector of plaintext values $z=(z_1,z_2,...,z_\ell)$
 - Parallel computation in a SIMD manner $z \otimes w = (z_1w_1, z_2w_2, ..., z_\ell w_\ell)$
- RLWE-based HEAAN
 - A ciphertext can encrypt a polynomial $m(X) \in R$
 - Observation: $X^n + 1 = (X \zeta_1)(X \zeta_1^{-1})(X \zeta_2)(X \zeta_2^{-1}) \dots (X \zeta_{n/2})(X \zeta_{n/2}^{-1})$
 - Decoding/Encoding function

$$R = \mathbb{Z}[X]/(X^n + 1) \subseteq \mathbb{R}[X]/(X^n + 1) \rightarrow \mathbb{C}^{n/2}$$

$$m(X) \mapsto z = (z_1, \dots, z_{n/2}), \ z_i = \mu(\zeta_i)$$

• Example: n = 4, $\zeta_1 = \exp(\pi i/4)$, $\zeta_2 = \exp(5\pi i/4)$

$$z = (1 - 2i, 3 + 4i) \mapsto m(X) = 2 - 2\sqrt{2}X + X^2 - \sqrt{2}X^3$$
$$\mapsto \mu(X) = 2000 - 2828X + 1000X^2 - 1414X^3$$

$$\mu(\zeta_1) \approx 1000.15 - 1999.55 i, \ \mu(\zeta_2) \approx 2999.85 + 3999.55 i$$

Summary

HEAAN natively support for the (approximate) fixed point arithmetic

- Ciphertext modulus $\log q = L \log p$ grows linearly
- Useful when evaluating analytic functions approximately:
 - Polynomial
 - Multiplicative Inverse
 - Trigonometric Functions
 - Exponential Function (Logistic Function, Sigmoid Function)
 - **...**
- Packing technique based on DFT
 - SIMD operation
 - Rotation on plaintext slots

$$z = (z_1, \dots, z_{n/2}) \mapsto z' = (z_2, \dots, z_{n/2}, z_1)$$

Table of Contents

Background

Construction

■ [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

Bootstrapping

• [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

Related Works

- Bootstrapping
 - Ciphertexts of a leveled HE have a limited lifespan

- Bootstrapping
 - Ciphertexts of a leveled HE have a limited lifespan
 - Refresh a ciphertext $ct = Enc_{sk}(m)$ by evaluating the decryption circuit homomorphically

$$Dec_{sk}(ct) = m \iff F_{ct}(sk) = m \text{ where } F_{ct}(*) = Dec_*(ct)$$

Bootstrapping

- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext $ct = Enc_{sk}(m)$ by evaluating the decryption circuit homomorphically

$$Dec_{sk}(ct) = m \iff F_{ct}(sk) = m \text{ where } F_{ct}(*) = Dec_*(ct)$$

• Bootstrapping key $BK = Enc_{sk}(sk)$

$$F_{\text{ct}}(BK) = F_{\text{ct}}(Enc_{sk}(sk)) = Enc_{sk}(F_{ct}(sk)) = Enc_{sk}(m)$$

Bootstrapping

- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext $ct = Enc_{sk}(m)$ by evaluating the decryption circuit homomorphically

$$Dec_{sk}(ct) = m \iff F_{ct}(sk) = m \text{ where } F_{ct}(*) = Dec_*(ct)$$

• Bootstrapping key $BK = Enc_{sk}(sk)$

$$F_{\text{ct}}(BK) = F_{\text{ct}}(Enc_{sk}(sk)) = Enc_{sk}(F_{ct}(sk)) = Enc_{sk}(m)$$

HEAAN

Homomorphic operations introduce errors

$$F_{\text{ct}}(BK) = F_{\text{ct}}(Enc_{sk}(sk)) = Enc_{sk}(F_{ct}(sk) + e) = Enc_{sk}(m + e)$$

It is ok to have an additional error

Bootstrapping

- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext $ct = Enc_{sk}(m)$ by evaluating the decryption circuit homomorphically

$$Dec_{sk}(ct) = m \iff F_{ct}(sk) = m \text{ where } F_{ct}(*) = Dec_*(ct)$$

• Bootstrapping key $BK = Enc_{sk}(sk)$

$$F_{\text{ct}}(BK) = F_{\text{ct}}(Enc_{sk}(sk)) = Enc_{sk}(F_{ct}(sk)) = Enc_{sk}(m)$$

HEAAN

Homomorphic operations introduce errors

$$F_{\text{ct}}(BK) = F_{\text{ct}}(Enc_{sk}(sk)) = Enc_{sk}(F_{ct}(sk) + e) = Enc_{sk}(m + e)$$

- It is ok to have an additional error
- How to evaluate the decryption circuit (efficiently)?

$$Dec_{sk}(ct) = \langle ct, sk \rangle \pmod{q}$$

Approximate Decryption

$$\mathrm{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t = \langle \mathrm{ct}, \mathrm{sk} \rangle \mapsto [t]_q = \mu,$$

$$t = qI + \mu \text{ for some } |I| < K$$

- Naïve solution: polynomial interpolation on [-Kq, Kq]
- Huge depth, complexity & inaccurate result

Approximate Decryption

$$\mathrm{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t = \langle \mathrm{ct}, \mathrm{sk} \rangle \mapsto [t]_q = \mu,$$

$$t = qI + \mu \ \mathrm{for \ some} \ |I| < K$$

■ Idea 1: Restriction of domain $|\mu| \ll q$

Approximate Decryption

$$\mathrm{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t = \langle \mathrm{ct}, \mathrm{sk} \rangle \mapsto [t]_q = \mu,$$

$$t = qI + \mu \text{ for some } |I| < K$$

- Idea 1: Restriction of domain $|\mu| \ll q$
- Idea 2: Sine approximation $\mu \approx \frac{q}{2\pi} \sin \theta$ for $\theta = \frac{2\pi}{q} t$

- Direct Taylor approximation
 - huge depth & complexity, low precision

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

$$S_r(\theta) \approx \sin \theta$$

- Direct Taylor approximation
 - huge depth & complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$C_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k)!} (\theta/2^r)^{2k} \approx \cos(\theta/2^r),$$

$$S_0(\theta) = \sum_{k=0}^d \frac{(-1)^k}{(2k+1)!} (\theta/2^r)^{2k+1} \approx \sin(\theta/2^r).$$

Idea 2: Use double-angle formula

$$C_{k+1}(\theta) = C_k^2(\theta) - S_k^2(\theta), \ S_{k+1}(\theta) = 2S_k(\theta) \cdot C_k(\theta).$$

• Numerically stable & Linear complexity

 $S_r(\theta) \approx \sin \theta$

- Ring-based HEAAN
 - Homomorphic operations on plaintext slots, not on coefficients
 - We need to perform the modulo reduction on coefficients

- Ring-based HEAAN
 - Homomorphic operations on plaintext slots, not on coefficients
 - We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

- Ring-based HEAAN
 - Homomorphic operations on plaintext slots, not on coefficients
 - We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

- Ring-based HEAAN
 - Homomorphic operations on plaintext slots, not on coefficients
 - We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

- Ring-based HEAAN
 - Homomorphic operations on plaintext slots, not on coefficients
 - We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

- Performance of Bootstrapping
 - Depth consumption : Sine evaluation
 - Complexity: Slot-Coefficient switchings (# of slots)
- Experimental Results
 - 127 + 12 = 139 s / 128 slots X 12 bits
 - \bullet 456 + 68 = 524 s / 128 slots X 24 bits

Table of Contents

Background

Construction

■ [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

Bootstrapping

• [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

Related Works

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
 - Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
 - FFT-like algorithms to optimize Slot-Coefficient switchings
 - Better evaluation of sine function based on Chebyshev approximation

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
 - Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
 - FFT-like algorithms to optimize Slot-Coefficient switchings
 - Better evaluation of sine function based on Chebyshev approximation
- [JKLS, CCS18] Secure Outsourced Matrix Computation and Application to Neural Networks
 - Evaluation of an encrypted CNN model on the encrypted MNIST data
- [DSC+18] CHET, [BLW18] nGraph-HE: Automatic HE compilers for Deep Learning

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
 - Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
 - FFT-like algorithms to optimize Slot-Coefficient switchings
 - Better evaluation of sine function based on Chebyshev approximation
- [JKLS, CCS18] Secure Outsourced Matrix Computation and Application to Neural Networks
 - Evaluation of an encrypted CNN model on the encrypted MNIST data
- [DSC+18] CHET, [BLW18] nGraph-HE: Automatic HE compilers for Deep Learning

- [CHKKS, SAC18] A Full RNS Variant of Approximate Homomorphic Encryption
 - Better performance without any high-precision arithmetic library
 - iDASH 2018
- [KS, ICISC18] Approximate Homomorphic Encryption over the Real Numbers

