Approximate Homomorphic Encryption

- Construction \& Bootstrapping

Yongsoo Song, UC San Diego

ECC 2018, Osaka

Approximate Homomorphic Encryption

- Construction \& Bootstrapping

Yongsoo Song, UC San Diego
Microsoft Research, Redmond
ECC 2018, Osaka

Table of Contents

- Background

- Construction
- [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- Bootstrapping
- [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption
- Related Works

Table of Contents

- Background

- Construction
- [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

HEAAN (慧眼)

- Bootstrapping
- [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption
- Related Works

Advanced Cryptography

- Protecting Computation, not just data

ne

Advanced Cryptography

- Protecting Computation, not just data
- Differential Privacy
- Zero-knowledge Proof
- Multiparty Computation

- Attribute Based Encryption

Advanced Cryptography

- Protecting Computation, not just data
- Differential Privacy
- Zero-knowledge Proof
- Multiparty Computation

- Attribute Based Encryption
- ...
- Homomorphic Encryption (2009~)

Homomorphic Encryption

Homomorphic Encryption

Homomorphic Encryption

Multi-Party Computation

Comparison: HE vs MPC

Re-usability	Homomorphic Encryption No further interaction	Multi-Party Computation
Interaction between parties each time		
Model		
Speed		

Comparison: HE vs MPC

Re-usability	Homomorphic Encryption No further interaction	Multi-Party Computation
Model	Semi-honest Cloud + Trusted SK Owner	Single-use encryption between parties each time
Speed		Semi-honest parties without collusion

Comparison: HE vs MPC

	Homomorphic Encryption	Multi-Party Computation
Re-usability	One-time encryption No further interaction	Single-use encryption Interaction between parties each time
Model	Semi-honest Cloud + Trusted SK Owner	Semi-honest parties without collusion
Speed	Slow in computation (but can speed-up using SIMD)	Slow in communication (due to large circuit to be exchanged)

Summary of Progresses

- 2009-10: Plausibility
- [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
- [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours

Summary of Progresses

- 2009-10: Plausibility
- [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
- [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours
- 2013-15: Efficiency
- [HS14] IBM's open-source library HElib
- Implementation of Brakerski-Gentry-Vaikuntanathan (BGV) scheme
- The same 30K-gate circuit in 4 minutes

Summary of Progresses

- 2009-10: Plausibility
- [GH11] A single bit operation takes 30 minutes
- 2011-12: Large Circuits
- [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours
- 2013-15: Efficiency
- [HS14] IBM's open-source library HElib
- Implementation of Brakerski-Gentry-Vaikuntanathan (BGV) scheme
- The same 30 K -gate circuit in 4 minutes
- 2015-today: Usability
- Various schemes with different advantages
- Simpler and faster implementations
- Real-world tasks: Big data analysis, Machine learning
- Standardization meetings (2017~)
- iDASH competitions (2014~)

4 Big Takeaways from Satya Nadella's Talk at
Microsoft Build
-000

You May Like
Discover The Six 2018 Luxury Cars So Cool It's Incredible They Cost Under
by Faqeo | Sponsored

By Jonathan vanian may 7, 2018
Microsoft CEO Satya Nadella is trying to distinguish the business technology giant from its technology brethren by focusing on digital privacy.

Meghan Markle's
Affordable Cashmere
Sweater Is Back in Stock
by T+L - Style | Sponsored

4 Big Takeaways from Satya Nadella's Talk at Microsoft Build

One way Nadella is attempting to convince businesses that Microsoft (MSFT, $+3.63 \%$) can improve its AI technology while protecting user data is by promoting a computing technique called homomorphic encryption. Although still a research-heavy technique, homomorphic encryption would presumably let companies analyze and crunch encrypted data without needing to unscramble that information.

Nadella is pitching the technique as a way for companies to "learn, train on ${ }^{8}$ encrypted data." The executive didn't explain how far along Microsoft is on advancing the encryption technique, but the fact that he mentioned the wonky terms shows that the company is touting user privacy as a selling point for its Azure cloud business.

4 Big Takeaways from Satya Nadella's Talk at Microsoft Build

One way Nadella is attempting to convince businesses that Microsoft (MSFT, $+3.63 \%$) can improve its AI technology while protecting user data is by promoting a computing technique called homomorphic encryption. Although still a research-heavy technique, homomorphic encryption would presumably let companies analyze and crunch encrypted data without needing to unscramble that information.

Nadella is pitching the technique as a way for companies to "learn, train on ${ }^{g}$ encrypted data." The executive didn't explain how far along Microsoft is on advancing the encryption technique, but the fact that he mentioned the wonky terms shows that the company is touting user privacy as a selling point for its Azure cloud business.

Best Performing HE Schemes

Type	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BCV12] BCV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext			
Operation			
Library			

Best Performing HE Schemes

Type	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BCV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext	Finite Field Packing		
Operation	Addition, Multiplication		
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)		

Best Performing HE Schemes

Type	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext	Finite Field Packing	Binary string	
Operation	Addition, Multiplication	Look-up table \& bootstrapping	

Best Performing HE Schemes

Type	Classical HE	Fast Bootstrapping	Approximate Encryption
Scheme	[BGV12] BGV [Bra12, FV12] B/FV	[DM15] FHEW [CGGI16] TFHE	[CKKS17] HEAAN
Plaintext	Finite Field Packing	Binary string	Real/Complex numbers Packing
Operation	Addition, Multiplication	Look-up table \& bootstrapping	Fixed-point Arithmetic
Library	HElib (IBM) SEAL (Microsoft Research) Palisade (Duality inc.)	TFHE (inpher, gemalto, etc.)	HEAAN (SNU)

iDASH Security \& Privacy Workshop

- An interdisciplinary challenge on genomic privacy research
- Motivated by real world biomedical applications
- Participation of privacy technology experts (academia and industry)
- Developed practical yet rigorous solutions for privacy preserving genomic data sharing and analysis
- Reported in the media (e.g., Nature News, GenomeWeb)

iDASH 2017 - Logistic Regression Model Training

- A machine learning model to predict the disease
- 1500 records +18 features for training

iDASH 2017 - Logistic Regression Model Training

- A machine learning model to predict the disease
- 1500 records +18 features for training

Teams	$\begin{gathered} \text { AUC } \\ 0.7136 \end{gathered}$	Secure learning		Overall time (mins)
		Time (mins)	Memory (MB)	
SNU	0.6934	10.250	2775.333	10.360
CEA LIST	0.6930	2206.057	238.255	2207.363
KU Leuven	0.6722	155.695	7266.727	160.912
EPFL	0.6584	15.089	1498.513	16.739
MSR	0.6574	385.021	26299.344	396.390
Waseda*	0.7154	2.077	7635.600	5.332
Saarland**	N/A	48.356	29752.527	57.344

[^0]
iDASH 2018 - Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Repeat logistic regression n times

iDASH 2018 - Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Team	Submission	Schemes	Time (mins)	Memory (MB)	Accuracy
A*FHE	A*FHE 1	HEAAN	922.48	3,777	0.999
	A*FHE 2		1,632.97	4,093	0.905
Chimera	Version 1	TFHE+HEAAN (Chimera)	201.73	10,375	0.993
	Version 2		215.95	15,166	0.35
Delft Blue	Delft Blue	HEAAN	1,844.82	10,814	0.969
UCSD	Log Reg	HEAAN pkg: RNS HEAAN	1.66	14,901	0.993
	Lin Reg		0.42	3,387	0.989
Duality Inc	Log Reg	HEAAN pkg: PALISADE	3.80	10,230	0.993
	Chi2 test		0.09	1,512	0.983
SNU	SNU 1	- HEAAN	52.49	15,204	0.984
	SNU 2		52.37	15,177	0.988
IBM	IBM-Complex	HEAAN pkg: HEllb	23.35	8,651	0.911
	IBM- Real		52.65	15,613	0.526

Co-variants
SNP data

Repeat logistic regression n times

iDASH 2018 - Semi-Parallel GWAS

- Compute Genome Wide Association Studies (GWAS)
- 3 Co-variants [age, height, weight] + 14,841 SNPS

Team	Submission	Schemes	Time (mins)	Memory (MB)	Accuracy
A*FHE	A*FHE 1	HEAAN	922.48	3,777	0.999
	A*FHE 2		1,632.97	4,093	0.905
Chimera	Version 1	TFHE+HEAAN (Chimera)	201.73	10,375	0.993
	Version 2		215.95	15,166	0.35
Delft Blue	Delft Blue	HEAAN	1,844.82	10,814	0.969
UCSD	Log Reg	HEAAN pkg: RNS HEAAN	1.66	14,901	0.993
	Lin Reg		0.42	3,387	0.989
Duality Inc	Log Reg	HEAAN pkg: PALISADE	3.80	10,230	0.993
	Chi2 test		0.09	1,512	0.983
SNU	SNU 1	- HEAAN	52.49	15,204	0.984
	SNU 2		52.37	15,177	0.988
IBM	IBM-Complex	HEAAN pkg: HEllb	23.35	8,651	0.911
	IBM- Real		52.65	15,613	0.526

Co-variants
SNP data

Repeat logistic regression n times

Table of Contents

- Background

- Construction
- [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- Bootstrapping
- [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption
- Related Works

Approximate Computation

- Numerical Representation

Encode m into an integer $m \approx p x$ for a scaling factor $p . \quad \sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^{3}$

Approximate Computation

- Numerical Representation

Encode m into an integer $m \approx p x$ for a scaling factor $p . \quad \sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^{3}$

- Fixed-Point Multiplication

Compute $m=m_{1} m_{2}$ and extract its significant digits $m^{\prime} \approx p^{-1} \cdot m$
$1.234 \times 5.678=\left(1234 \cdot 10^{-3}\right) \times\left(5678 \cdot 10^{-3}\right)=7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3}=7.007$

Approximate Computation

- Numerical Representation

Encode m into an integer $m \approx p x$ for a scaling factor $p . \quad \sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^{3}$

- Fixed-Point Multiplication

Compute $m=m_{1} m_{2}$ and extract its significant digits $m^{\prime} \approx p^{-1} \cdot m$
$1.234 \times 5.678=\left(1234 \cdot 10^{-3}\right) \times\left(5678 \cdot 10^{-3}\right)=7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3}=7.007$

- LWE problem (Regev, 2005)
(b, \vec{a}) such that $\langle(b, \vec{a}),(1, \vec{s})\rangle=e(\bmod q)$

Approximate Computation

- Numerical Representation

Encode m into an integer $m \approx p x$ for a scaling factor $p . \quad \sqrt{2} \mapsto 1412 \approx \sqrt{2} \cdot 10^{3}$

- Fixed-Point Multiplication

Compute $m=m_{1} m_{2}$ and extract its significant digits $m^{\prime} \approx p^{-1} \cdot m$
$1.234 \times 5.678=\left(1234 \cdot 10^{-3}\right) \times\left(5678 \cdot 10^{-3}\right)=7006652 \cdot 10^{-6} \mapsto 7007 \cdot 10^{-3}=7.007$

- LWE problem (Regev, 2005)
(b, \vec{a}) such that $\langle(b, \vec{a}),(1, \vec{s})\rangle=e(\bmod q)$
- Previous HE

$$
\mathrm{ct}=\operatorname{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=\frac{q}{t} m+e(\bmod q)
$$

Modulo t plaintext vs Rounding operation

HEAAN

- A New Message Encoding

$$
\begin{aligned}
& \mathrm{ct}=\operatorname{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=p m+e(\bmod q) \\
& \text { Consider } e \text { as part of approximation error }
\end{aligned}
$$

HEAAN

- A New Message Encoding

$$
\mathrm{ct}=\operatorname{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=p m+e(\bmod q)
$$

Consider e as part of approximation error

- Homomorphic Operations

Input: $\quad \mu_{1} \approx p m_{1}, \mu_{2} \approx p m_{2}$
Addition: $\quad \mu_{1}+\mu_{2} \approx p \cdot\left(m_{1}+m_{2}\right)$

HEAAN

- A New Message Encoding

$$
\mathrm{ct}=\operatorname{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=p m+e(\bmod q)
$$

Consider e as part of approximation error

- Homomorphic Operations

Input:

$$
\mu_{1} \approx p m_{1}, \mu_{2} \approx p m_{2}
$$

Addition: $\quad \mu_{1}+\mu_{2} \approx p \cdot\left(m_{1}+m_{2}\right)$
Multiplication: $\mu=\mu_{1} \mu_{2} \approx p^{2} \cdot m_{1} m_{2}$

11

$$
\mu=p^{2} m_{1} m_{2}+e
$$

HEAAN

- A New Message Encoding

$$
\mathrm{ct}=\mathrm{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=p m+e(\bmod q)
$$

Consider e as part of approximation error

- Homomorphic Operations

Input:

$$
\mu_{1} \approx p m_{1}, \mu_{2} \approx p m_{2}
$$

Addition: $\quad \mu_{1}+\mu_{2} \approx p \cdot\left(m_{1}+m_{2}\right)$
Multiplication: $\mu=\mu_{1} \mu_{2} \approx p^{2} \cdot m_{1} m_{2}$
Rounding: $\quad \mu^{\prime} \approx p^{-1} \cdot \mu \approx p \cdot m_{1} m_{2}$

HEAAN

- A New Message Encoding

$$
\mathrm{ct}=\mathrm{Enc}_{\mathrm{sk}}(m), \quad\langle\mathrm{ct}, \mathrm{sk}\rangle=p m+e(\bmod q)
$$

Consider e as part of approximation error

- Homomorphic Operations

Input:

$$
\mu_{1} \approx p m_{1}, \mu_{2} \approx p m_{2}
$$

Addition: $\quad \mu_{1}+\mu_{2} \approx p \cdot\left(m_{1}+m_{2}\right)$
Multiplication: $\mu=\mu_{1} \mu_{2} \approx p^{2} \cdot m_{1} m_{2}$
Rounding: $\quad \mu^{\prime} \approx p^{-1} \cdot \mu \approx p \cdot m_{1} m_{2}$

- Support for the (approximate) fixed-point arithmetic!
- Leveled HE : $q=p^{L}$

Packed Ciphertext

- Construction over the ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R(\bmod q)$

Packed Ciphertext

- Construction over the ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R(\bmod q)$
- Packing Technique:
- A single ciphertext can encrypt a vector of plaintext values $z=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)$
- Parallel computation in a SIMD manner $z \otimes w=\left(z_{1} w_{1}, z_{2} w_{2}, \ldots, z_{\ell} w_{\ell}\right)$

Packed Ciphertext

- Construction over the ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R(\bmod q)$
- Packing Technique:
- A single ciphertext can encrypt a vector of plaintext values $z=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)$
- Parallel computation in a SIMD manner $z \otimes w=\left(z_{1} w_{1}, z_{2} w_{2}, \ldots, z_{\ell} w_{\ell}\right)$
- RLWE-based HEAAN
- A ciphertext can encrypt a polynomial $m(X) \in R$
- Observation: $X^{n}+1=\left(X-\zeta_{1}\right)\left(X-\zeta_{1}^{-1}\right)\left(X-\zeta_{2}\right)\left(X-\zeta_{2}^{-1}\right) \ldots\left(X-\zeta_{n / 2}\right)\left(X-\zeta_{n / 2}^{-1}\right)$

Packed Ciphertext

- Construction over the ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R(\bmod q)$
- Packing Technique:
- A single ciphertext can encrypt a vector of plaintext values $z=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)$
- Parallel computation in a SIMD manner $z \otimes w=\left(z_{1} w_{1}, z_{2} w_{2}, \ldots, z_{\ell} w_{\ell}\right)$
- RLWE-based HEAAN
- A ciphertext can encrypt a polynomial $m(X) \in R$
- Observation: $X^{n}+1=\left(X-\zeta_{1}\right)\left(X-\zeta_{1}^{-1}\right)\left(X-\zeta_{2}\right)\left(X-\zeta_{2}^{-1}\right) \ldots\left(X-\zeta_{n / 2}\right)\left(X-\zeta_{n / 2}^{-1}\right)$
- Decoding/Encoding function

$$
\begin{aligned}
R=\mathbb{Z}[X] /\left(X^{n}+1\right) \subseteq \mathbb{R}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{C}^{n / 2} \\
m(X) & \mapsto z=\left(z_{1}, \ldots, z_{n / 2}\right), z_{i}=\mu\left(\zeta_{i}\right)
\end{aligned}
$$

Packed Ciphertext

- Construction over the ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ and $R_{q}=R(\bmod q)$
- Packing Technique:
- A single ciphertext can encrypt a vector of plaintext values $z=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)$
- Parallel computation in a SIMD manner $z \otimes w=\left(z_{1} w_{1}, z_{2} w_{2}, \ldots, z_{\ell} w_{\ell}\right)$
- RLWE-based HEAAN
- A ciphertext can encrypt a polynomial $m(X) \in R$
- Observation: $X^{n}+1=\left(X-\zeta_{1}\right)\left(X-\zeta_{1}^{-1}\right)\left(X-\zeta_{2}\right)\left(X-\zeta_{2}^{-1}\right) \ldots\left(X-\zeta_{n / 2}\right)\left(X-\zeta_{n / 2}^{-1}\right)$
- Decoding/Encoding function

$$
\begin{aligned}
R=\mathbb{Z}[X] /\left(X^{n}+1\right) \subseteq \mathbb{R}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{C}^{n / 2} \\
m(X) & \mapsto z=\left(z_{1}, \ldots, z_{n / 2}\right), z_{i}=\mu\left(\zeta_{i}\right)
\end{aligned}
$$

- Example: $n=4, \zeta_{1}=\exp (\pi i / 4), \zeta_{2}=\exp (5 \pi i / 4)$

$$
\begin{aligned}
& z=(1-2 i, 3+4 i) \mapsto m(X)=2-2 \sqrt{2} X+X^{2}-\sqrt{2} X^{3} \\
& \mapsto \mu(X)=2000-2828 X+1000 X^{2}-1414 X^{3} \\
& \mu\left(\zeta_{1}\right) \approx 1000.15-1999.55 i, \mu\left(\zeta_{2}\right) \approx 2999.85+3999.55 i
\end{aligned}
$$

Summary

- HEAAN natively support for the (approximate) fixed point arithmetic
- Ciphertext modulus $\log q=L \log p$ grows linearly
- Useful when evaluating analytic functions approximately:
- Polynomial
- Multiplicative Inverse
- Trigonometric Functions
- Exponential Function (Logistic Function, Sigmoid Function)
- ...
- Packing technique based on DFT
- SIMD operation
- Rotation on plaintext slots

$$
z=\left(z_{1}, \ldots, z_{n / 2}\right) \mapsto z^{\prime}=\left(z_{2}, \ldots, z_{n / 2}, z_{1}\right)
$$

Table of Contents

- Background

- Construction

- [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers
- Bootstrapping
- [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption
- Related Works

Bootstrapping of HEAAN

- Bootstrapping
- Ciphertexts of a leveled HE have a limited lifespan

Bootstrapping of HEAAN

- Bootstrapping
- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext ct $=\operatorname{Enc}_{\text {sk }}(m)$ by evaluating the decryption circuit homomorphically

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct})=m \Leftrightarrow F_{\mathrm{ct}}(\mathrm{sk})=m \text { where } F_{\mathrm{ct}}(*)=\operatorname{Dec}_{*}(\mathrm{ct})
$$

Bootstrapping of HEAAN

- Bootstrapping
- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext ct $=\operatorname{Enc}_{\text {sk }}(m)$ by evaluating the decryption circuit homomorphically

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct})=m \Leftrightarrow F_{\mathrm{ct}}(\mathrm{sk})=m \text { where } F_{\mathrm{ct}}(*)=\operatorname{Dec}_{*}(\mathrm{ct})
$$

- Bootstrapping key $\mathrm{BK}=\mathrm{Enc}_{\mathrm{sk}}(\mathrm{sk})$

$$
F_{\mathrm{ct}}(\mathrm{BK})=F_{\mathrm{ct}}\left(\operatorname{Enc}_{\mathrm{sk}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}\left(F_{\mathrm{ct}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}(m)
$$

Bootstrapping of HEAAN

- Bootstrapping
- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext ct $=\operatorname{Enc}_{\text {sk }}(m)$ by evaluating the decryption circuit homomorphically

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct})=m \Leftrightarrow F_{\mathrm{ct}}(\mathrm{sk})=m \text { where } F_{\mathrm{ct}}(*)=\operatorname{Dec}_{*}(\mathrm{ct})
$$

- Bootstrapping key $\mathrm{BK}=\mathrm{Enc}_{\mathrm{sk}}(\mathrm{sk})$

$$
F_{\mathrm{ct}}(\mathrm{BK})=F_{\mathrm{ct}}\left(\operatorname{Enc}_{\mathrm{sk}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}\left(F_{\mathrm{ct}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}(m)
$$

- HEAAN
- Homomorphic operations introduce errors

$$
F_{\mathrm{ct}}(\mathrm{BK})=F_{\mathrm{ct}}\left(\operatorname{Enc}_{\mathrm{sk}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}\left(F_{\mathrm{ct}}(\mathrm{sk})+e\right)=\operatorname{Enc}_{\mathrm{sk}}(m+e)
$$

- It is ok to have an additional error

Bootstrapping of HEAAN

- Bootstrapping
- Ciphertexts of a leveled HE have a limited lifespan
- Refresh a ciphertext ct $=\operatorname{Enc}_{\text {sk }}(m)$ by evaluating the decryption circuit homomorphically

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct})=m \Leftrightarrow F_{\mathrm{ct}}(\mathrm{sk})=m \text { where } F_{\mathrm{ct}}(*)=\operatorname{Dec}_{*}(\mathrm{ct})
$$

- Bootstrapping key $\mathrm{BK}=\mathrm{Enc}_{\mathrm{sk}}(\mathrm{sk})$

$$
F_{\mathrm{ct}}(\mathrm{BK})=F_{\mathrm{ct}}\left(\operatorname{Enc}_{\mathrm{sk}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}\left(F_{\mathrm{ct}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}(m)
$$

- HEAAN
- Homomorphic operations introduce errors

$$
F_{\mathrm{ct}}(\mathrm{BK})=F_{\mathrm{ct}}\left(\operatorname{Enc}_{\mathrm{sk}}(\mathrm{sk})\right)=\operatorname{Enc}_{\mathrm{sk}}\left(F_{\mathrm{ct}}(\mathrm{sk})+e\right)=\operatorname{Enc}_{\mathrm{sk}}(m+e)
$$

- It is ok to have an additional error
- How to evaluate the decryption circuit (efficiently)?

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct})=\langle\mathrm{ct}, \mathrm{sk}\rangle(\bmod q)
$$

Approximate Decryption

$$
\begin{aligned}
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t=\langle\mathrm{ct}, \mathrm{sk}\rangle \mapsto & {[t]_{q}=\mu, } \\
& t=q I+\mu \text { for some }|I|<K
\end{aligned}
$$

- Naïve solution: polynomial interpolation on [-Kq, Kq]
- Huge depth, complexity \& inaccurate result

Approximate Decryption

$$
\begin{aligned}
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t=\langle\mathrm{ct}, \mathrm{sk}\rangle \mapsto & {[t]_{q}=\mu, } \\
& t=q I+\mu \text { for some }|I|<K
\end{aligned}
$$

- Idea 1: Restriction of domain $|\mu| \ll q$

Approximate Decryption

$$
\begin{aligned}
& \operatorname{Dec}_{\mathrm{sk}}(\mathrm{ct}) \mapsto t=\langle\mathrm{ct}, \mathrm{sk}\rangle \mapsto[t]_{q}=\mu, \\
& t=q I+\mu \text { for some }|I|<K
\end{aligned}
$$

- Idea 1: Restriction of domain $|\mu| \ll q$
- Idea 2: Sine approximation $\mu \approx \frac{q}{2 \pi} \sin \theta$ for $\theta=\frac{2 \pi}{q} t$

Sine Evaluation

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right), \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right) \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right) \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right), \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right) \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right), \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right), \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right), \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right) .
\end{aligned}
$$

- Idea 2: Use double-angle formula

$$
C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) .
$$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right) \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right)
\end{aligned}
$$

- Idea 2: Use double-angle formula
$C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) . \quad S_{r}(\theta) \approx \sin \theta$

Sine Evaluation

- Direct Taylor approximation
- huge depth \& complexity, low precision
- Idea 1: Low-degree approximation of smooth functions

$$
\begin{aligned}
& C_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k)!}\left(\theta / 2^{r}\right)^{2 k} \approx \cos \left(\theta / 2^{r}\right) \\
& S_{0}(\theta)=\sum_{k=0}^{d} \frac{(-1)^{k}}{(2 k+1)!}\left(\theta / 2^{r}\right)^{2 k+1} \approx \sin \left(\theta / 2^{r}\right)
\end{aligned}
$$

—sine —S_8(X)

- Idea 2: Use double-angle formula
$C_{k+1}(\theta)=C_{k}^{2}(\theta)-S_{k}^{2}(\theta), S_{k+1}(\theta)=2 S_{k}(\theta) \cdot C_{k}(\theta) . \quad S_{r}(\theta) \approx \sin \theta$
- Numerically stable \& Linear complexity

Slot-Coefficient Switching

- Ring-based HEAAN
- Homomorphic operations on plaintext slots, not on coefficients
- We need to perform the modulo reduction on coefficients

Slot-Coefficient Switching

- Ring-based HEAAN
- Homomorphic operations on plaintext slots, not on coefficients
- We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

Slot-Coefficient Switching

- Ring-based HEAAN
- Homomorphic operations on plaintext slots, not on coefficients
- We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

Slot-Coefficient Switching

- Ring-based HEAAN
- Homomorphic operations on plaintext slots, not on coefficients
- We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation

Slot-Coefficient Switching

- Ring-based HEAAN
- Homomorphic operations on plaintext slots, not on coefficients
- We need to perform the modulo reduction on coefficients
- Pre/post computation before/after sine evaluation
- Performance of Bootstrapping
- Depth consumption: Sine evaluation
- Complexity: Slot-Coefficient switchings (\# of slots)
- Experimental Results
- $127+12=139 \mathrm{~s} / 128$ slots $\times 12$ bits
- $456+68=524$ s / 128 slots $\times 24$ bits

Table of Contents

- Background

- Construction

- [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

- Bootstrapping

- [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption
- Related Works

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
- Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
- FFT-like algorithms to optimize Slot-Coefficient switchings
- Better evaluation of sine function based on Chebyshev approximation

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
- Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
- FFT-like algorithms to optimize Slot-Coefficient switchings
- Better evaluation of sine function based on Chebyshev approximation
- [JKLS, CCS18] Secure Outsourced Matrix Computation and Application to Neural Networks
- Evaluation of an encrypted CNN model on the encrypted MNIST data
- [DSC+18] CHET, [BLW18] nGraph-HE : Automatic HE compilers for Deep Learning

Followed Work

- Improved Bootstrapping for Approximate Homomorphic Encryption
- Joint work with Hao Chen and Ilaria Chillotti (submission to EC19)
- FFT-like algorithms to optimize Slot-Coefficient switchings
- Better evaluation of sine function based on Chebyshev approximation
- [JKLS, CCS18] Secure Outsourced Matrix Computation and Application to Neural Networks
- Evaluation of an encrypted CNN model on the encrypted MNIST data
- [DSC+18] CHET, [BLW18] nGraph-HE : Automatic HE compilers for Deep Learning
- [CHKKS, SAC18] A Full RNS Variant of Approximate Homomorphic Encryption
- Better performance without any high-precision arithmetic library
- iDASH 2018
- [KS, ICISC18] Approximate Homomorphic Encryption over the Real Numbers

[^0]: * Interactive mechanism, no complete guarantee on 80-bit security at "analyst" side

