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Approximate HE
§ Every approximate number contains an Error (from its unknown true value).

Consider an RLWE error as part of it. 

ct = Enc (M)   if   [<ct,sk>]
q

= M+e ≈ M.

§ Approximate Rounding is easy!

[<ct, sk>]
q

= M

HomRnd : ct ↦ ct’ =「p-1 · ct 」

⇒ [<ct’, sk>]
q/p

≈ M/p

(1.234) × (5.678) = (1,234 × 5,678) × 10-6 = (7,006,652) × 10-6 ≈ (7,007) × 10-3.



Functionality of Approximate HE
Packing Technique
§ K = Q[x]/(Φm(x)), R = Z[x]/(Φm(x)).
§ Φm(X) = ∏i(x - ζi) for the primitive m-th roots of unity ζi.
§ Encoding map: (Mi)i ↦M(X) such that M(ζi) = Mi

Approximate addition, multiplication, and rounding
§ Every homomorphic operation includes a small noise

Evaluation of Analytic Functions
§ exp (z),
§ z-1
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“Bitwise Encryption”
(DM15, CGGI16)

Eval. of LUTs on {0,1}* with bootstrapping
on LWE ciphertext (<-> RLWE <- RGSW)

Large expansion rate (storage, cost)

“Word Encryption”
(BGV12, Bra12, FV12)

Packing & SIMD operations on GF(pd)
between RLWE ciphertexts

Long latency (Bootstrapping)

“Approximate Encryption”
(CKKS17)

Packing & SIMD operation over the real/complex numbers
(add, mult + rounding) between RLWE ciphertexts



Application Researches of HE (2017~)
§ Machine Learning & Neural Networks: 7
§ Biomedical & Health data analysis: 3
§ Bioinformatics: 3
§ Genomic data analysis: 3
§ Cyber Physical System & Internet of Things: 4
§ Smart Grid: 3
§ Image processing: 3
§ Voting: 2
§ Advertising: 2

[Kim-Song-Kim-Lee-Cheon’18] iDASH Privacy & Security Competition 2017
Six minutes to train a logistic regression model
from encrypted dataset of size 1579 * (18+1).

> 80 % 
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Bootstrapping of Approximate HE
Bootstrapping = Evaluation of Decryption circuit ?

§Homomorphic operation of approximate HE induces a small “noise”:

Dec (ct) = M => HomEval ( Dec (ct) ) = Enc (M + e)

Refreshed ciphertext encrypts an approximate value.

§ Dec (ct, sk) = <ct, sk> (mod q).

Idea 1: <ct, sk> = q · t + M for some small |t| < K = |sk|1.

ct = Enc (q · t + M) with a ciphertext modulus q’ >> q.

How to (efficiently) evaluate the modular reduction (q · t + M) ↦M ?
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§ Goal: Represent modular reduction (q · t + M) ↦M as a circuit over the complex numbers.

§ Naive solution: Lagrange interpolation on the domain (-Kq, Kq)

Efficiency Degree d = O(Kq),  Complexity O(d) operations - exp. on the depth!

Correctness Large error on the boundary
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Evaluation of Modular Reduction
§ Goal: Represent modular reduction (q · t + M) ↦M as a circuit over the complex numbers.

§ Modular Reduction is discontinuous when |M| = q/2.

Idea 2: Start bootstrapping when |M| << q.
Use the formula M ≈ (q/2π) · sin [(2π/q) (q · t + M)].
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Evaluation of Sine
§ Goal: Evaluate M ≈ (q/2π) · sin θ for   θ = (2π/q) (q · t + M)   such that |θ|< 2 π K

§ Naive solution: Taylor series approximation sin θ = θ – (θ3/6) + (θ5/120) – …

Degree d = O(Kq) to achieve Rd = O(1).

Complexity O(Kq) operations.
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Evaluation of Sine
§ Goal: Evaluate M ≈ (q/2π) · sin θ for   θ = (2π/q) (q · t + M)   such that |θ|< 2 π K

§ How to reduce the complexity?

Idea 3: Double-angle formula

cos θ = cos2(θ/2) – sin2(θ/2), sin θ = 2 cos(θ/2) · sin(θ/2).

Low-degree Taylor series of cos(θ/2r),  sin(θ/2r) for some r = O(log (Kq))

& Recursive evaluation (r iterations) to get an approximate value of (sin θ).

§ Efficiency

Depth: L = r + O(1) = O(log (Kq)).

Complexity: O(L) operations. Linear on the depth!
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Summary
§ ct = Enc(M) (mod q) is an encryption of (q · t + M) in a large modulus.

§ Approximation of Modular reduction (q · t + M)q = M using a trigonometric function.

§ Recursive evaluation strategy to reduce the computational costs.

ü No Bootstrapping Key.

ü Linear Complexity on the depth L = O( log(|sk|1 · q) ) of decryption circuit.

ü Small Memory : 1 ciphertext encrypting exp (i · θ) = cos θ + i sin θ.

ü Implication :  Machine Learning, Cyber-Physical System



Comparison & Experimental Results

HS15, CH18 Coeff To Slots

~O(1) per slot

Bit/Digit Extraction Slots To Coeff

~O(1) per slotOurs Sine Evaluation

DM15,CGGI16 Accumulator: O(n) operation / 1 slot

§Digit Extraction: 6s (Z127). 30s (Z1272). 15s (Z26). 239s (Z28).

§ Sine Evaluation: 12.5s (12-bit precision). 68s (24-bit precision).

[Song-Han-Kim-Kim-Cheon 18] Full Residue Number System:  8x ~ 12x speedup

§Accumulator: 0.06s (1 bit). 10s (6 bits)




