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Abstract. The LWE problem has been widely used in many construc-
tions for post-quantum cryptography due to its reduction from the worst-
case of lattice hard problems and the lightweight operations for gener-
ating its instances. The PKE schemes based on the LWE problem have
a simple and fast decryption, but the encryption phase requires large
parameter size for the leftover hash lemma or Gaussian samplings.

In this paper, we propose a novel PKE scheme, called Lizard, with-
out relying on either of them. The encryption procedure of Lizard first
combines several LWE samples as in the previous LWE-based PKEs,
but the following step to re-randomize this combination before adding
a plaintext is different: it removes several least significant bits of each
component of the computed vector rather than adding an auxiliary error
vector. To the best of our knowledge, Lizard is the first IND-CPA secure
PKE under the hardness assumptions of the LWE and LWR problems,
and its variant, namely CCALizard, achieves IND-CCA security in the
(quantum) random oracle model.

Our approach accelerates the encryption speed to a large extent and
also reduces the size of ciphertexts. We present an optimized C imple-
mentation of our schemes, which shows outstanding performances with
concrete security: On an Intel single core processor, an encryption and
decryption for CCALizard with 256-bit plaintext space under 128-bit
quantum security take only 32,272 and 47,125 cycles, respectively. To
achieve these results, we further take some advantages of sparse small
secrets. Lizard is submitted to NIST’s post-quantum cryptography stan-
dardization process.
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1 Introduction

Since the National Institute of Standards and Technology (NIST) launched a
project to develop new quantum-resistant cryptography standards [26], post-
quantum cryptography has gained a growing attention at this moment. Lattice-
based cryptography, one of the most attractive areas of the post-quantum cryp-
tography, has been studied actively over the last decade due to its distinctive
advantages on the strong security, fast implementations, and versatility in many
applications. In particular, the Learning with Errors (LWE) problem [31] has
very attractive features for many usages due to its rigorous reduction from the
worst-case of the lattice problems that are regarded to be hard to solve even
after the advance of quantum computers. The LWE problem was first introduced
by Regev [31] to construct a Public-Key Encryption (PKE). Some well-known
variants of Regev’s scheme [21,29] had a drawback requiring too large parame-
ters to be used in practice. It was improved by Lindner and Peikert [25] using a
method to insert noises to a combination of LWE samples in the encryption stage.
Recently, several post-quantum key exchanges [6,10–12,17,28], key encapsula-
tion mechanism [11], and one more efficient PKE [15] with sparse small secrets
have been proposed on the hardness assumptions of the LWE problem and its
ring (or module) variant. They enjoy fast performances in practice as well as
quantum-resistant security, but the noise sampling causes some overheads.

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert
and Rosen [8], is a de-randomized version of the LWE problem, which generates
an instance using the deterministic rounding process into a smaller modulus
instead of adding auxiliary errors. Since the sampling of LWR instances does not
contain the Gaussian sampling process, it is rather simpler than that of LWE
instances. Up to recently, there have been several researches on the hardness of
the LWR problem, which address that the LWR problem is at least as hard as
the LWE problem when the number of samples is bounded [7–9].

Our Contributions. We propose a PKE scheme based on LWE and LWR for the
first time, called Lizard. Lizard has a conceptually simple encryption procedure
consisting of subset sum and rounding operations without Gaussian samplings.
We also apply cryptanalytic strategies for LWE to LWR and estimate the concrete
hardness of LWR for the first time, which is expected to be useful in the future
studies.

Through the cryptanalysis against the LWR problem, we show that the
parameters of Lizard can be set as tight as those of the Lindner and Peikert’s
PKE scheme [25], so our scheme enjoys two advantages of smaller ciphertext
and faster encryption speed compared to their scheme under the same setup of
distributions, security level, and decryption failure probability.

Taking some advantages of sparse binary secrets as well, we further show
that our PKE scheme Lizard is very practical. We implement CCA variants
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of Lizard and achieve a comparable performance to NTRU [18,22,24] in spite
of the better security grounds: Our scheme has a stronger security guarantee
than NTRU in the sense that our scheme has a provable security from the LWE
and LWR problems which have reductions from the standard lattice problems
(GapSVP, SIVP), but NTRU does not.1

Technical Details. Our PKE scheme consists of Lizard.Setup, Lizard.KeyGen,
Lizard.Enc, and Lizard.Dec. In the key generation Lizard.KeyGen, we choose a
private key s and use it to generate several samples of the LWE problem in modulo
q. The public key is (A, b = As + e) ∈ Z

m×n
q × Z

m
q , where the error term e is

sampled from the discrete Gaussian distribution. To encrypt a plaintext M ∈ Zt,
we first generate an ephemeral secret vector r and calculate (AT r, 〈b, r〉) ∈
Z

n+1
q . Then, we rescale the vector into a lower modulus p < q using the rounding

function defined by
Z

n+1
q → Z

n+1
p , x �→ �(p/q) · x� ,

where the function �·� denotes the component-wise rounding of entries to the
closest integers. After then, encoded plaintext M̃ ∈ Zp is added to the second
component of the rescaled vector.

For the concrete instantiation of our PKE scheme, we take private keys and
ephemeral secrets used in encryption procedure from certain small distributions
for efficiency. In particular, ephemeral secrets for the encryption procedure are
chosen to be binary vectors in {0,±1}m with low Hamming weights. The Ham-
ming weight of ephemeral secret vectors has an effect on the error sizes after
subset sum of the public data, while the secret key size is related to the error
caused by rounding into a smaller modulus p. Therefore, the smallness of private
keys and ephemeral secrets takes an important role not only in efficiency of our
scheme including encryption and decryption speeds, but also in setting feasible
parameter sets to achieve negligible decryption failure probabilities.

Cryptanalysis of LWR and Parameter Selection. While various attacks
on the LWE problem were proposed, the cryptanalytic hardness of the LWR
problem has not been well-understood so far. Considering all possible attacks
on LWE and LWR in our setup, we concluded that the best attack on the LWR
problem with sparse small secrets is a variant of dual attack combined with
Albrecht’s combinatorial attack for the sparse secrets [3].

Through complete analyses on the correctness conditions, we also present our
parameter sets for three different security levels based on the best attacks against
LWE and LWR, following the methodology of [6,10]. In particular, we provide
the recommended parameter set for the long-term security, which remains secure
against all known quantum attacks. Due to the lack of space, we do not include
the complete analyses in the conference version; for more details, see the full
version of this paper [16].

1 A provably secure variant of NTRU [32] is secure under the hardness assumption of
ring-LWE, but the ring-LWE problem only has a reduction from a lattice problem
with ring structure, not from the standard lattice problems.
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IND-CCA Variant of Lizard. We present CCA-secure version of Lizard,
namely CCALizard. We converted Lizard with negligible decryption failure prob-
ability into CCALizard using a variant of Fujisaki-Okamoto transformation
[19,20,23,33] which make it IND-CCA PKE in the random oracle model (ROM)
and quantum random oracle model (QROM), respectively. Note that CCALizard
achieves IND-CCA security in standard ROM with tighter security reduction.

Implementation and Comparison. We provide our implementation results
for Lizard and CCALizard. The proposed PKE schemes were implemented in C
language and we measured the performances on Linux with an Intel Xeon E5-
2620 CPU running at 2.10 GHz processor. With 128-bit quantum security, the
encryption and decryption of CCALizard take about 32,272 and 47,125 cycles,
respectively. We compare CCALizard with NTRU [22,24] and the recently pro-
posed LWE-based PKE scheme [15], which shows comparable results to NTRU
in terms of both enc/dec speed and ciphertext size. Our source code is publicly
available at https://github.com/LizardOpenSource/Lizard c.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
summarize some notations used in this paper, and introduce LWE and LWR. We
describe our public-key encryption scheme Lizard based on both LWE and LWR
in Sect. 3, presenting its correctness condition, security proof and advantages.
Finally, we provide implementation results of our schemes, and compare their
performances with other lattice-based schemes in Sect. 4. We also describe an
IND-CCA variant of Lizard in AppendixA.

2 Preliminaries

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For a positive integer q, we
use Z ∩ (−q/2, q/2] as a representative of Zq. For a real number r, �r� denotes
the nearest integer to r, rounding upwards in case of a tie. We denote vectors
in bold, e.g. a, and every vector in this paper is a column vector. The norm ‖·‖
is always 2-norm in this paper. We denote by 〈·, ·〉 the usual dot product of two
vectors. For positive integers t, p, and q, t|p|q denotes t|p and p|q. We use x ← D
to denote the sampling x according to the distribution D. It denotes the uniform
sampling when D is a finite set. For an integer n ≥ 1, Dn denotes the product
of i.i.d. random variables Di ∼ D. We let λ denote the security parameter
throughout the paper: all known valid attacks against the cryptographic scheme
under scope should take Ω(2λ) bit operations. A function negl : N → R

+ is
negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that
negl(λ) < 1/p(λ) for all λ > λ0. For two matrices A and B with the same
number of rows, (A‖B) denotes their row concatenation, i.e., for A ∈ Z

m×n1

and B ∈ Z
m×n2 , the m × (n1 + n2) matrix C = (A‖B) is defined as cij ={

ai,j 1 ≤ j ≤ n1

bi,(j−n1) n1 < j ≤ n1 + n2

. Let Bm,h be the subset of {−1, 0, 1}m of which

elements have exactly h number of non-zero components.

https://github.com/LizardOpenSource/Lizard_c
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2.2 Distributions

For a positive integer q, we define Uq by the uniform distribution over Zq. For a
real σ > 0, the discrete Gaussian distribution of parameter σ, denoted by DGσ, is
a probability distribution with support Z that assigns a probability proportional
to exp(−πx2/σ2) to each x ∈ Z. Note that the variance of DGσ is very close
to σ2/2π unless σ is very small. For an integer 0 ≤ h ≤ n, the distribution
HWT n(h) samples a vector uniformly from {0,±1}n, under the condition that
it has exactly h nonzero entries. For a real number 0 < ρ < 1, the distribution
ZOn(ρ) samples a vector v from {0,±1}n where each component vi of the vector
v is chosen satisfying Pr[vi = 0] = 1 − ρ and Pr[vi = 1] = ρ/2 = Pr[vi = −1].

2.3 Learning with Errors

Since Regev [31] introduced the learning with errors (LWE), a number of LWE-
based cryptosystems have been proposed relying on its versatility. For an n-
dimensional vector s ∈ Z

n and an error distribution χ over Z, the LWE distribu-
tion ALWE

n,q,χ(s) over Zn
q ×Zq is obtained by choosing a vector a uniformly and ran-

domly from Z
n
q and an error e from χ, and outputting (a, b = 〈a, s〉+e) ∈ Z

n
q ×Zq.

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent
samples (ai, bi) from ALWE

n,q,χ(s). The decision LWE for a distribution D over Z
n
q

of a secret vector s, denoted by LWEn,q,χ(D), aims to distinguish the distribu-
tion ALWE

n,q,χ(s) from the uniform distribution over Z
n
q × Zq with non-negligible

advantage, for a fixed s ← D. When the number of samples are limited by m,
we denote the problem by LWEn,m,q,χ(D).

In this paper, we only consider the discrete Gaussian χ = DGαq as an error
distribution where α is the error rate in (0, 1), so α will substitute the distribu-
tion χ in description of LWE problem, say LWEn,m,q,α(D). The LWE problem is
self-reducible, so we usually omit the key distribution D when it is a uniform
distribution over Z

n
q .

The hardness of the decision LWE problem is guaranteed by the worst-case
hardness of the standard lattice problems: the decision version of the shortest
vector problem (GapSVP), and the shortest independent vectors problem (SIVP).
After Regev [31] presented the quantum reduction from those lattice problems
to the LWE problem, Peikert et al. [14,27] improved the reduction to a classical
version for significantly worse parameter; the dimension should be the size of
n log q. In this case, note that the reduction holds only for the GapSVP, not
SIVP. After the works on the connection between the LWE problem and some
lattice problems, some variants of LWE, of which the secret distributions are
modified from the uniform distribution, were proposed. In [14], Brakerski et
al. proved that the LWE problem with binary secret is at least as hard as the
original LWE problem. Following the approach of [14], Cheon et al. [15] proved
the hardness of the LWE problem with sparse secret, i.e., the number of non-zero
components of the secret vector is a constant.

As results of Theorem 4 in [15], the hardness of the LWE problems with
(sparse) small secret, LWEn,m,q,β(HWT n(h)) and LWEn,m,q,β(ZOn(ρ)), are
guaranteed by the following theorem.
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Theorem 1. (Informal) For positive integers m,n, k, q, h, 0 < α, β < 1 and
0 < ρ < 1, following statements hold:

1. If log(nCh) + h > k log q and β > α
√

10h, then the LWEn,m,q,β(HWT n(h))
problem is at least as hard as the LWEk,m,q,α problem.

2. If
(
(1 − ρ) log

(
1

1−ρ

)
+ ρ − ρ log ρ

)
n > k log q and β > α

√
10n, then the

LWEn,m,q,β(ZOn(ρ)) problem is at least as hard as the LWEk,m,q,α problem.

In [13,29,30], to pack a string of plaintexts in a ciphertext, LWE with single
secret was generalized to LWE with multiple secrets. An instance of multi-secret
LWE is (a, 〈a, s1〉 + e1, . . . , 〈a, sk〉 + ek) where s1, . . . , sk are secret vectors and
e1, . . . , ek are independently chosen error vectors. From a standard hybrid argu-
ment, multi-secret LWE is proved to be at least as hard as LWE with single
secret [1].

2.4 Learning with Rounding

The LWR problem was firstly introduced by Banerjee et al. [8] to improve the effi-
ciency of pseudorandom generator (PRG) based on the LWE problem. Unlikely
to the LWE problem, errors in the LWR problem are deterministic so that the
problem is so-called a “derandomized” version of the LWE problem. To hide
secret information, the LWR problem uses a rounding by a modulus p instead of
inserting errors. Then, the deterministic error is created by scaling down from
Zq to Zp. For an n-dimensional vector s over Zq, the LWR distribution ALWR

n,q,p(s)
over Zn

q ×Zp is obtained by choosing a vector a from Z
n
q uniform randomly, and

returning (
a,

⌊
p

q
· (〈a, s〉 mod q)

⌉)
∈ Z

n
q × Zp.

As in the LWE problem, ALWR
n,m,q,p(s) denotes the distribution of m samples from

ALWR
n,q,p(s); that is contained in Z

m×n
q ×Z

m
p . The search LWR problem are defined

respectively as finding secret s just as same as the search version of LWE problem.
In contrary, the decision LWRn,m,q,p(D) problem aims to distinguish the distri-
bution ALWR

n,q,p(s) from the uniform distribution over Z
n
q × Zp with m instances

for a fixed s ← D.
In [8], Banerjee et al. proved that there is an efficient reduction from the LWE

problem to the LWR problem for a modulus q of super-polynomial size. Later,
the follow-up works by Alwen et al. [7] and Bogdanov et al. [9] improved the
reduction by eliminating the restriction on modulus size and adding a condition
of the bound of the number of samples. In particular, the reduction by Bogdanov
et al. works when 2mBp/q is bounded, where B is a bound of errors in the LWE
problem, m is the number of samples in both problems, and p is the rounding
modulus in the LWR problem. That is, the rounding modulus p is proportional to
1/m for fixed q and B. Since the reduction from LWE to LWR preserves the secret
distribution, the hardness of LWRn,m,q,p(HWT n(h)) and LWRn,m,q,p(ZOn(ρ)) is
obtained from that of the LWE problems with corresponding secret distributions.
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3 (LWE+LWR)-Based Public-Key Encryption

In this section, we present a (probabilistic) public-key encryption Lizard based
on both the LWE and LWR problems with provable security. Our construction
has several advantages: one is that we could compress the ciphertext size by
scaling it down from Zq to Zp where p is the rounding modulus, and the other is
that we speed up the encryption algorithm by eliminating the Gaussian sampling
process.

3.1 Construction

We now describe our public-key encryption Lizard based on both the LWE and
LWR problems. The public key consists of m number of n-dimensional LWE
samples with 
 multiple secrets. A plaintext is an 
-dimensional vector of which
each component is contained in Zt, and a ciphertext is (n+
)-dimensional vector
in Z

n+�
p . The PKE scheme Lizard is described as follows:

• Lizard.Setup(1λ): Choose positive integers m,n, q, p, t and 
. Choose private
key distribution Ds over Z

n, ephemeral secret distribution Dr over Z
m, and

parameter σ for discrete Gaussian distribution DGσ. Output params ←
(m,n, q, p, t, 
,Ds,Dr, σ).

• Lizard.KeyGen(params): Generate a random matrix A ← Z
m×n
q . Choose a

secret matrix S = (s1‖ · · · ‖s�) by sampling column vectors si ∈ Z
n indepen-

dently from the distribution Ds. Generate an error matrix E = (e1‖ · · · ‖e�)
from DGm×�

σ and let B ← AS + E ∈ Z
m×�
q where the operations are held

modulo q. Output the public key pk ← (A‖B) ∈ Z
m×(n+�)
q and the secret key

sk ← S ∈ Z
n×�.

• Lizard.Encpk(m): For a plaintext m = (mi)1≤i≤� ∈ Z
�
t, choose an m-

dimensional vector r ∈ Z
m from the distribution Dr. Compute the vectors

c′
1 ← AT r and c′

2 ← BT r over Zq, and output the vector c ← (c1, c2) ∈ Z
n+�
p

where c1 ← �(p/q) · c′
1� ∈ Z

n
p and c2 ← �(p/t) · m� + �(p/q) · c′

2� ∈ Z
�
p.

• Lizard.Decsk(c): For a ciphertext c = (c1, c2) ∈ Z
n+�
p , compute and output

the vector m′ ←
⌊

t
p (c2 − ST c1)

⌉
(mod t).

We will assume that t | p | q in the rest of paper. This restriction allows us to
compute c2 by a single rounding process, i.e., c2 = �(p/t) · m + (p/q) · c′

2�, and
makes the implementation of rounding procedures faster. However, our scheme
still works correctly for parameters not satisfying this condition when t < p < q.

3.2 Correctness and Security

The following lemma shows a required condition of parameter setup to ensure
the correctness of our PKE scheme. Note that the assumption t | p | q in Lemma 1
is not necessary for the correctness of our scheme, but it makes the correctness
condition more tight.
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Lemma 1 (Correctness). Assuming that t | p | q, the public key encryption
Lizard works correctly as long as the following inequality holds for the security
parameter λ:

Pr
[
|〈e, r〉 + 〈s, f〉| ≥ q

2t
− q

2p

]
< negl(λ)

where e ← DGm
σ , r ← Dr, s ← Ds, and f ← Z

n
q/p.

Proof. Let r ∈ Z
m be a vector sampled from Dr in our encryption procedure,

and let c′ = (c′
1, c

′
2) ← (AT r, BT r) ∈ Z

n+�
q . The output ciphertext is c ← (c1 =

�(p/q) · c′
1� , c2 = �(p/t) · m� + �(p/q) · c′

2�).
Let f1 ← c′

1 (mod q/p) ∈ Z
n
q/p and f2 ← c′

2 (mod q/p) ∈ Z
�
q/p be the vectors

satisfying (q/p)·c1 = c′
1−f1 and (q/p)·(c2−�(p/t) · m�) = c′

2−f2. Note that f1 =
AT r (mod q/p) is uniformly and randomly distributed over Z

n
q/p independently

from the choice of r, e, and s. Then for any 1 ≤ i ≤ 
, the i-th component of
c2 − ST c1 ∈ Z

�
q is

�(p/t) · mi� + (p/q) · {(c′
2 − ST c′

1)[i] − (f2[i] − 〈si, f1〉)}
= �(p/t) · mi� + (p/q) · (〈ei, r〉 + 〈si, f1〉) − (p/q) · f2[i]
= �(p/t) · mi� + �(p/q) · (〈ei, r〉 + 〈si, f1〉)�

since f2 = (AS + E)T r = ST f1 + ET r (mod q/p). Therefore, the correctness of
our scheme is guaranteed if the encryption error is bounded by p/2t, or equiva-
lently, |〈ei, r〉 + 〈si, f1〉| < q/2t − q/2p with an overwhelming probability. ��

We argue that the proposed encryption scheme is IND-CPA secure under the
hardness assumptions of the LWE problem and the LWR problem. The following
theorem gives an explicit proof of our argument on security.

Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under
the hardness assumption of LWEn,m,q,DGσ

(Ds) and LWRm,n+�,q,p(Dr).

Proof. An encryption of m can be generated by adding �(p/t) · m� to an
encryption of zero. Hence, it is enough to show that the pair of public infor-
mation pk = (A‖B) ← Lizard.KeyGen(params) and encryption of zero c ←
Lizard.Encpk(0) is computationally indistinguishable from the uniform distribu-
tion over Z

m×(n+�)
q × Z

n+�
q for a parameter set params ← Lizard.Setup(1λ).

• D0 = {(pk, c) : pk ← Lizard.KeyGen(params), c ← Lizard.Encpk(0)}.
• D1 = {(pk, c) : pk ← Z

m×(n+�)
q , c ← Lizard.Encpk(0)}.

• D2 = {(pk, c) : pk ← Z
m×(n+�)
q , c ← Z

n+�
p }.

The public key pk = (A‖B) ← Lizard.KeyGen(params) is generated by sam-
pling m instances of LWE problem with 
 independent secret vectors s1, . . . , s� ←
Ds. In addition, the multi-secret LWE problem is no easier than ordinary LWE
problem as noted in Sect. 2.3. Hence, distributions D0 and D1 are computa-
tionally indistinguishable under the LWEn,m,q,DGσ

(Ds) assumption. Now assume
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that pk is uniform random over Z
m×(n+�)
q . Then pk and c ← Lizard.Encpk(0)

together form (n + 
) instances of the m-dimensional LWR problem with secret
r ← Dr. Therefore, distributions D1 and D2 are computationally indistinguish-
able under the LWRm,n+�,q,p(Dr) assumption. As a result, distributions D0 and
D2 are computationally indistinguishable under the hardness assumption of
LWEn,m,q,DGσ

(Ds) and LWRm,n+�,q,p(Dr), which denotes the IND-CPA security
of the PKE scheme. ��

3.3 Advantages of (LWE+LWR)-Based PKE Scheme

In this subsection, we compare Lizard with the previous LWE-based PKE
schemes, Regev’s scheme (Regev) [31] and Lindner-Peikert’s scheme (LP) [25],
and show that our scheme has some advantages in performance under a reason-
able cryptanalytic assumption about the LWR problem. Instead of the specific
descriptions of previous schemes, we will consider generalized versions of the
Regev and LP schemes with undetermined small distributions Ds of secret vec-
tor and Dr of ephemeral vector for encryption2.

All three schemes assume the hardness of the LWE problem to guarantee
the computational randomness of public information pk ← (A‖B = AS + E) ∈
Z

m×n
q ×Z

m×�
q , where A is a matrix uniformly and randomly chosen from Z

m×n
q ,

S = (s1‖ · · · ‖s�) is a secret matrix sampled from D�
s, and E is an error matrix

sampled from DGm×�
σ . This matrix is computationally indistinguishable from a

uniform matrix over Zm×n
q ×Z

m×�
q under LWEn,m,q,σ(Ds) assumption. The main

difference of these schemes is shown in the encryption procedure of plaintext
m ∈ Z

�
t.

• Regev.Encpk(m): Choose an m-dimensional vector r ∈ Z
m from the distri-

bution Dr. Output the vector c ← (c1, c2) ∈ Z
n+�
q where c1 ← AT r and

c2 ← BT r + (q/t) · m.
• LP.Encpk(m): Choose an m-dimensional vector r ∈ Z

m from the distribution
Dr and error vectors f1 ← DGn

σ′ and f2 ← DG�
σ′ . Output the vector c ←

(c1, c2) ∈ Z
n+�
q where c1 ← AT r − f1 and c2 ← BT r + (q/t) · m + f2.

• Lizard.Encpk(m): Choose an m-dimensional vector r ∈ Z
m from the distri-

bution Dr. Compute the vectors c′
1 ← AT r and c′

2 ← BT r over Zq, and
output the vector c ← (c1, c2) ∈ Z

n+�
p where c1 ← �(p/q) · c′

1� ∈ Z
n
p and

c2 ← �(p/q) · c′
2� + �(p/t) · m� ∈ Z

�
p.

The Regev scheme applies the leftover hash lemma (LHL) to guarantee the
randomness of (pk, Lizard.Encpk(m)). However, this information-theoretic app-
roach requires huge parameter m = Ω((n + 
) log q) + ω(log λ) for sufficiently
large entropy of r, so the Regev scheme is far less efficient than other two
schemes in public key size and encryption speed. In the case of the LP scheme,

2 Hence, the parameter choices of [25] are irrelevant of this comparison. Note that the
chosen parameter sets in [25] do not achieve the claimed security anymore, due to
many recent attacks in the literatures [3–5].
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an encryption of zero forms (n + 
)-number of LWE samples with public infor-
mation pk. Hence, the conditional distribution of LP.Encpk(m) for given pk is
computationally indistinguishable from the uniform distribution Z

n+�
q under the

LWEm,n+�,q,σ′(Dr) assumption. As described in the previous subsection, Lizard
has a similar security proof with LP, but the LWRm,n+�,q,p(Dr) assumption
is used instead of LWEm,n+�,q,σ′(Dr). In summary, Lizard can be viewed as a
(LWE+LWR)-based scheme while Regev and LP are represented as (LWE+LHL)-
based and (LWE + LWE)-based schemes, respectively.

Table 1. Comparison of Lizard, Regev, and LP

Scheme Security Correctness condition

Regev LWEn,m,q,σ(Ds) +
Leftover hash lemma

|〈ei, r〉| < q/2t:

ei ← DGm
σ , r ← Dr

LP LWEn,m,q,σ(Ds) +
LWEm,n+�,q,σ′(Dr)

|〈ei, r〉 + 〈si, f1〉 + f2[i]| < q/2t:

ei ← σm, r ← Dr,

si ← Ds, f1 ← DGn
σ′ , f2[i] ← DGσ′

Lizard LWEn,m,q,σ(Ds) +
LWRm,n+�,q,p(Dr)

|〈ei, r〉 + 〈si, f1〉| < q/2t − q/2p:

ei ← DGm
σ , r ← Dr,

si ← Ds, f1 ← Z
n
q/p

Now let us consider the required conditions for correctness of schemes. All
three schemes has the same decryption structure: for a ciphertext c = (c1, c2),
compute c2 − ST c1 and extract its most significant bits. In our scheme, an
encryption error can be represented as �(p/q) · (〈ei, r〉 + 〈si, f1〉)�, where si is
i-th secret vector, ei is an error vector sampled from the discrete Gaussian
distribution, r is a randomly chosen small vector for encryption, and f1 is a
random vector in Z

n
q/p defined in the proof of Lemma1. This error term should

be bounded by p/2t for the correctness of the scheme. Meanwhile, an error term
of the Regev scheme can be simply described by 〈ei, r〉 since an encryption of zero
is generated by multiplying a small vector r to public key; however, this value is
comparably larger than other two PKE schemes because of its huge dimension.
Finally, in the case of the LP scheme, an encryption c = (c1, c2) ∈ Z

n+�
q of m

satisfies (c2−ST c1)[i] = (q/t) ·mi +〈ei, r〉+〈si, f1〉+f2[i], so its encryption error
is expressed as 〈ei, r〉 + 〈si, f1〉 + f2[i]. This encryption error should be bounded
by q/2t for the correctness of the scheme. The hardness assumption problems
and correctness conditions of each scheme are summarized in Table 1.

We mainly compare the performances of LP and Lizard that are clearly
more efficient than the Regev scheme. Both schemes share the first error term
〈ei, r〉 of encryption noise. This value is a summation of many independent and
identically distributed random variables for various candidate distributions Dr

so that its distribution is close to a normal distribution by the central limit
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theorem. In the remaining terms, Lizard samples f1 from uniform distribution
Z

n
q/p and has a slightly tighter bound q/2t − q/2p, while LP samples f1 from

the discrete Gaussian distribution and has an additional error term f2[i]. Similar
to the first term, 〈si, f1〉 is close to a normal distribution for various candidate
distributions of Ds, whose variance depends on Ds and the variance of entries of
f1. Specifically, if the variance q2/12p2 of uniform distribution of Zq/p coincides
with the variance σ′2/2π of DGσ′ , then distributions 〈si, f1〉 in Lizard and LP
will be statistically close. In this case, the common term 〈ei, r〉 + 〈si, f1〉 of
two schemes will be close to a normal distribution of the same variance σ2

enc.
Therefore, the failure probabilities of Lizard and LP are approximately measured
by the complementary error function:

Pr[|〈ei, r〉 + 〈si, f1〉| <
q

2t
− q

2p
] ≈ erfc

(
q/2t − q/2p√

2σenc

)
, and

Pr[|〈ei, r〉 + 〈si, f1〉 + f2[i]| <
q

2t
] ≈ erfc

(
q/2t√

2(σ2
enc + σ′2)

)
,

respectively. Since q/2t − q/2p is close to q/2t and σ′ is very small compared
to σenc in parameter setting, two PKE schemes will have almost the same
decryption failure probability. For instance, in the case of our recommended
parameter set (t = 2, q = 2048, p = 512, m = 1024, n = 536, Ds =
ZOn(1/2), Dr = HWT m(134)), the decryption failure probability of Lizard
and LP is approximately measured by erfc((q/2t − q/2p)/

√
2σenc) ≈ 2−154 and

erfc((q/2t)/
√

2(σ2
enc + σ′2)) ≈ 2−155, respectively.

Moreover, in an attacker’s point of view, the hardness of LWR is somewhat
equivalent to that of LWE: So far, there is no known specialized attack strategy
for the deterministic rounding errors so that we applied LWE attacks for LWR to
estimate its hardness. It resulted as the following lemma which implies the attack
complexity against the LWR problem of the modulus q and rounding modulus
p is no less than that of the LWE problem with the same dimension, modulus
q, and the error distribution DGσ′ of the variance σ′2/2π = q2/12p2, in case of
applying the dual attack strategies in [5,6,15]3.

Lemma 2. Let m, k, q and p be positive integers. A lattice reduction algorithm
which achieves δ > 0 such that

m log q̂

log2 p̂
≤ 1

4 log δ

for p̂ =
√

6/π · p and q̂ =
√

12σr · p where σ2
r is the variance of component

of secret vector r leads an algorithm to solve the LWRm,k,q,p(Dr) problem with
advantage 1/23.

3 After approving it, Albrecht’s combinatorial strategy for sparse secrets in [3] can be
exploited naturally: As far as we know, the adjusted dual attack in [3] is the best
attack for LWR using sparse signed binary secrets.
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Proof. See the full version [16] of our paper.

This agrees with the view that an LWR sample (a, b = �(p/q) · 〈a, r〉�) ∈ Z
m
q ×Zp

can be naturally seen as a kind of an LWE sample by sending back the value b
to an element of Zq, i.e., b′ = (q/p) · b ∈ Zq satisfies b′ = 〈a, r〉 + f (mod q) for
a small error f = −〈a, r〉 (mod q/p).

Combining these two about functionality and security, we derive our conclu-
sion that Lizard achieves a better efficiency compared to LWE-based PKE scheme
while guaranteeing the same hardness in cryptanalysis. More precisely, if we set
the parameter satisfying σ′2/2π = q2/12p2, then Lizard has simpler and faster
encryption phase (rounding instead of Gaussian sampling) and smaller cipher-
texts size (n + 
) log p than (n + 
) log q of the LP scheme while preserving its
cryptanalytic security level and decryption failure probability.

Ciphertext bitsize Gaussian sampling
in encryption phase

LP (n + �) log q Yes

Lizard (n + �) log p No

4 Implementation

In this section, we present our implementation result for Lizard and its CCA ver-
sion called CCALizard. CCALizard is obtained by applying a variant of Fujisaki-
Okamoto (FO) transformation [19,20,23,33] to our Lizard encryption scheme.
Full description of CCALizard is presented in AppendixA.

In Sect. 4.1, we propose parameter sets for Lizard (and CCALizard) in three
perspectives, respectively. In Sect. 4.2, we present implementation results of
Lizard and its CCA version with referred parameters achieving 128-bit quan-
tum security.

4.1 Proposed Parameters

In this section, we propose parameter sets secure against the best attacks on
LWE and LWR using lattice basis reduction algorithm. Targeting 128-bit secu-
rity, we suggest three parameter options following the criteria in [6,10] so that
we have two sets called Classical and Recommended according to the security
estimates against classical and quantum attacks respectively, and one more set
called Paranoid for the pessimistic view. Note that Recommended parameter set
aims to achieve 128-bit quantum security.

Secret Distributions. We instantiate our scheme for the case that Ds =
ZOn(ρs) and Dr = HWT m(hr), proposing concrete parameter sets in Table 2.
We have some evidence in mind (Theorem 1) that LWE and LWR of sufficiently
large dimensions are secure even with the sparse secrets, and the sparse secret
in the LWR instance accelerates our encryption phase.
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Security Analysis. The security of our instantiation of Lizard relies on both
of the LWE and LWR assumptions with signed binary and sparse signed binary
secrets, respectively. We considered all known attacks for LWE including those
in [5], the recent dual attack [3] for sparse secrets and primal attack revisited
in [4], and also applied them to LWR with some helps from the lwe-estimator [2]4.
At the end, we came to the conclusion that the dual attack combined with BKW-
style combinatorial attack [3] is the best attack for our LWE and LWR instances.
To estimate the attack complexities, we adopted the methodology in [6,10] to
calculate the core SVP hardness in BKZ lattice reduction algorithm, setting the
time complexity of solving SVP as T = 20.292b, 20.265b, and 20.2075b for Classical,
Recommended, and Paranoid parameter sets, respectively, where b is the BKZ
block size. For lack of space, we present a detailed analysis on the dual attack
applied for LWR and the attack complexities for parameter sets in the full version
of our paper.

Note on Power-of-Twos. We set t = 2 to achieve cryptographically negligible
decryption failure probability more easily, and set p and q to be power-of-twos for
the following reasons: In the LWE and LWR attacks, one can reduce the modulus
q to q′ < q via modulus switching first and then apply arbitrary attack scenarios.
Especially since we use the binary (and even sparse) secrets, the benefits in the
considered attacks obtained by the modulus switching overwhelms others with
strategies for specific q’s as far as we know. Hence, any particular choice for
modulus q does not harm the security. Therefore, we set q and p as power-of-
twos to make the rounding procedures efficiently done through the bitwise shift
process.

Table 2. Suggested parameter sets for 128-bit security; n and m are dimensions of
LWE and LWR, respectively. q is a large modulus shared in LWE and LWR, and p is a
rounding modulus in LWR. α is an error rate in LWE, and ρs and hr are parameters for
secret distributions in LWE and LWR, respectively. ε denotes the estimated decryption
failure probability.

Parameter m n log q log p α−1 ρs hr ε

Classical 724 480 11 9 303 1/2 128 2−154

Recommended 1024 536 11 9 316 1/2 134 2−154

Paranoid 1024 704 13 9 404 1/2 200 2−150

4.2 Performance and Comparison

We present the implementation results for Lizard and CCALizard in Table 3.
Due to the lack of space, we defer a detailed sketch of our implementation which
presents symmetric cryptographic primitives involved and techniques to boost
up the speed of our algorithms to the full version of this paper.
4 We used the lwe-estimator [2] reported on July 6th, 2017. We remark that one can

find a guideline for attacking the LWE problem in [5].
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All the implementations of our schemes were written in C, and performed
on an Linux environment containing an Intel Xeon E5-2620 CPU running
at 2.10 GHz with Turbo Boost and Multithreading disabled. The gcc com-
piler version is 5.4.0, and we compiled our C implementation with flags -O3
-fomit-frame -pointer -march=native -std=c99 for the x86 64 architec-
ture. Throughout this subsection, the performances of key generations (resp.
encryptions and decryptions) of our schemes were reported as a mean value
across 100 (resp. 100000) measurements. We recorded public key sizes of our
schemes used in our software.5

Table 3. Performances of Lizard and CCALizard with 256-bit plaintexts in millisec-
onds with recommended parameters in Table 2

Our schemes KeyGen (ms) Enc (ms) Dec (ms)

Lizard 18.185 0.014 0.007

CCALizard 18.131 0.015 0.022

CCALizard vs. Lattice-based PKEs. We compare the performance of our
CCALizard to those of NTRU [22,24] and an LWE-based PKE in [15], say CCA-
CHK+, for the 128-bit quantum security. To make a fair comparison, we present
an implementation of CCALizard with the recommended parameters in Table 2,
the CCA-secure PKE scheme CCA-CHK+ with 128-bit post-quantum param-
eters in Table 2 of [15], and NTRU with the parameter set EES743EP1. For
NTRU, we get its performance on Intel Core i5-6600 from eBACS (https://
bench.cr.yp.to/results-encrypt.html). For CCA-CHK+, we refer the perfor-
mances from their paper.

We present two implementation results of ours: one for generating the public
matrix A with a random function, and the other for replacing A by a 256-bit
seed which generates A. The later result is recorded in brackets in Table 4. The
CCA-CHK+ scheme is obtained by adapting sparse small secrets for LWE and
applying the FO variant conversion [33] to achieve IND-CCA security, as in
our cases. It should be noticed that their parameter set is insecure now, and
it only achieves 58-bit quantum security in our perspective with the estimate
of the LWE security estimator of Albrecht [2]. NTRU with the parameter set
EES743EP1 achieves 159-bit quantum security according to the estimates from
[6]. As suggested in Table 4, the encryption and decryption speeds, and the
ciphertext size of CCALizard are comparable to those of NTRU. Compared to
CCA-CHK+, the encryption and decryption of CCALizard are about 25 times
and 17 times faster, respectively.

Lizard can be compared to other lattice-based Key Encapsulation Mecha-
nisms (KEM) such as [6,10,11] as well. However, since we focused on improving
performances of encryption and decryption rather than key generation, and KEM
5 Since the data type of each component of public key is uint16 t and the modulus q

is 211, our public key can be compressed by a factor 16/11.

https://bench.cr.yp.to/results-encrypt.html
https://bench.cr.yp.to/results-encrypt.html
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Table 4. Comparison of CCALizard, NTRU, and the CCA version of CHK+; Records
in brackets are results when generating the public matrix A with a 256-bit seed;
“kcycles” denotes kilocycles

CCA-PKE
scheme

KeyGen
(kcycles)

Enc
(kcycles)

Dec
(kcycles)

ptxt
(bytes)

ctxt
(bytes)

pk
(KB)

sk
(KB)

NTRU 1,136 102 110 59 980 1 1

CCA-CHK+ ≈76,700 ≈814 ≈785 32 804 - -

CCALizard 38,074
(34,615)

32 47 32 955 1,622
(524)

34

usually requires somewhat balanced computational costs for Alice and Bob who
want to establish a shared key using the KEM, it is hard to compare Lizard
to KEMs in parallel. We note that a ring version of our scheme which can be
naturally considered has more balanced features and it is highly competitive as
a KEM.

Acknowledgments. We would like to thank Martin Albrecht and Fernando Virdia
for valuable discussions on parameter selection. We would also like to thank Leo Ducas,
Peter Schwabe, Tsuyoshi Takagi, Yuntao Wang and anonymous SCN 2018 reviewers
for their useful comments.

A IND-CCA Variant of Lizard

In this section, we present CCA-secure encryption scheme, say CCALizard,
achieved by applying a variant of Fujisaki-Okamoto (FO) transformation
[19,20,23,33] to our Lizard encryption scheme. More precisely, we first convert
Lizard into IND-CCA Key Encapsulation Mechanism (KEM) applying the trans-
formation in [23], and then combine it with a (one-time) CCA-secure symmetric
encryption scheme.

G : Z�
t → Bm,hr

, H : Z�
t → {0, 1}d, H′ : Z�

t → Z
�
t are the hash functions, where

{0, 1}d is the plaintext space for CCALizard. Here, Lizard.Encpk(δ;v) denotes the
encryption of δ with the random vector v, i.e., the output of Lizard.Encpk(δ;v)
is (

⌊
(p/q) · ATv

⌉
,
⌊
(p/t) · δ + (p/q) · BTv

⌉
).

CCALizard consists of three algorithms (CCALizard.KeyGen, CCALizard.Enc,
CCALizard.Dec). CCALizard.KeyGen is the same as Lizard.KeyGen, and
CCALizard.Enc and CCALizard.Dec are as follows:

• CCALizard.Encpk(m ∈ {0, 1}d):
– Choose δ ← Z

�
t.

– Compute a tuple of vectors c1 := H(δ) ⊕ m, c2 := Lizard.Encpk(δ;G(δ)),
c3 := H′(δ).

– Output the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × Z
n+�
p × Z

�
t.

• CCALizard.Decsk(c):
– Parse c into c = (c1, c2, c3) ∈ {0, 1}d × Z

n+�
p × Z

�
t.
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– Compute δ′ ← Lizard.Decsk(c2) and v′ ← G(δ′).
– If (c2, c3) = (Lizard.Encpk(δ′;v′),H′(δ′)), then compute and output m′ ←

H(δ′) ⊕ c1.
– Otherwise, output ⊥.

Correctness. If Lizard is correct with the probability 1 − ε, then CCALizard
is correct except with the probability 1 − ε in the (quantum) random oracle
model [23].
Security. CCALizard achieves tight IND-CCA security in the random oracle
model, and non-tight IND-CCA security in the quantum random oracle model.
For IND-CCA security in ROM, the hash function H ′ and the hash value d is
not necessary.

Theorem 3. ([23], Theorems 3.2 and 3.3). For any IND-CCA adversary B on
CCALizard issuing at most qD queries to the decryption oracle, qG queries to
the random oracle G, and qH queries to the random oracle H, there exists an
IND-CPA adversary A on Lizard such that

AdvCCACCALizard(B) ≤ qG · ε +
qH

2ω(log λ)
+

2qG + 1
t�

+ 3 · AdvCPALizard(A)

where λ is a security parameter and ε is a decryption failure probability of Lizard
and CCALizard.

Theorem 4. ([23], Theorems 4.4 and 4.5). For any IND-CCA quantum adver-
sary B on CCALizard issuing at most qD (classical) queries to the decryption
oracle, qG queries to the quantum random oracle G, qH queries to the quantum
random oracle H, and qH′ queries to the quantum random oracle H′, there exists
an IND-CPA quantum adversary A on Lizard such that

AdvCCACCALizard(B) ≤ (qH + 2qH′)

√
8ε(qG + 1)2 + (1 + 2qG)

√
AdvCPALizard(A)

where ε is a decryption failure probability of Lizard and CCALizard.

Parameters for CCALizard. We use the recommended parameters in Table 2
for CCALizard and set t = 2, 
 = d = 256.

References

1. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle
length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 659–680. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 23

2. Albrecht, M.R.: A Sage Module for estimating the concrete security of learning
with errors instances (2017). https://bitbucket.org/malb/lwe-estimator

3. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

https://doi.org/10.1007/978-3-662-53008-5_23
https://doi.org/10.1007/978-3-662-53008-5_23
https://bitbucket.org/malb/lwe-estimator
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4


176 J. H. Cheon et al.
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