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Abstract

Background: As genome sequencing technology develops rapidly, there has lately been an increasing need to keep
genomic data secure even when stored in the cloud and still used for research. We are interested in designing a
protocol for the secure outsourcing matching problem on encrypted data.

Method: We propose an efficient method to securely search a matching position with the query data and extract
some information at the position. After decryption, only a small amount of comparisons with the query information
should be performed in plaintext state. We apply this method to find a set of biomarkers in encrypted genomes. The
important feature of our method is to encode a genomic database as a single element of polynomial ring.

Result: Since our method requires a single homomorphic multiplication of hybrid scheme for query computation, it
has the advantage over the previous methods in parameter size, computation complexity, and communication cost.
In particular, the extraction procedure not only prevents leakage of database information that has not been queried
by user but also reduces the communication cost by half. We evaluate the performance of our method and verify that
the computation on large-scale personal data can be securely and practically outsourced to a cloud environment
during data analysis. It takes about 3.9 s to search-and-extract the reference and alternate sequences at the queried
position in a database of size 4M.

Conclusion: Our solution for finding a set of biomarkers in DNA sequences shows the progress of cryptographic
techniques in terms of their capability can support real-world genome data analysis in a cloud environment.

Keywords: Homomorphic encryption, Biomarkers

Background
The rapid development of genome sequencing technol-
ogy enables us to access large genome dataset and it looks
poised to make a significant breakthrough in medical
research.While genomic data can be used for a wide range
of applications including healthcare, biomedical research,
and direct-to-consumer services, it has numerous special
distinguishing features and it can violate personal privacy
via genetic disclosure or genetic discrimination [1–3]. Due
to these potential privacy issues, it should be managed
with care.
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There have been various privacy-enhancing techniques
using cryptographic methods as outsourced analysis tools
of genomic data. Recently, it has been suggested that
we can preserve privacy through homomorphic encryp-
tion (HE), which allows computations to be carried out
on ciphertexts. Yasuda et al. [4] gave a practical solution
to find the location of a pattern in a text by comput-
ing multiple Hamming distance values on encrypted data.
Lauter et al. [5] gave a solution to privately compute the
basic genomic algorithms used in genome-wide associa-
tion studies.
Homomorphic encryption can be applied to privacy-

preserving sequence comparison, but it is still impractical
for the analysis of entire human genome information. For
example, Cheon et al. [6] presented a protocol to compute
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the edit distance on homomorphically encrypted data but
it took about 27 s even on length 8 DNA sequence. It is
not easy to efficiently approximate the edit distance over
encryption even though the distance to a public human
DNA sequence is given [7]. This inefficiency comes from
the difficulty of homomorphic evaluation of equality test:
Encrypting the inputs bit-wise and computing over the
encrypted bits yield expensive computation cost (at least
linear in the data bit-length).
In this paper, we suggest an efficient method to securely

search a set of biomarkers using hybrid Ring-GSW homo-
morphic encryption scheme.

Problem setting
The iDASH (Integrating Data for Analysis, ‘anonymiza-
tion’ and SHaring) National Center organizes the iDASH
Privacy & Security challenge for secure genome analy-
sis. This paper is based on a submission to the task 3 in
2016 iDASH challenge: secure outsourcing of testing for
genetic diseases on encrypted genomes. The goal of this
task is to privately calculate the probability of genetic dis-
eases through matching a set of biomarkers to encrypted
genomes stored in a public cloud service. The requirement
is that the entire matching process needs to be carried out
using homomorphic encryption so that any information
about database and query should not be revealed to the
server during computation.
Suppose that the client has a Variation Call For-

mat (VCF) file which contains genotype information such
as chromosome number and position in the genome. It
also contains some information for each position such
as reference and alternate sequences, where each base
must be one of SNPs: A,T ,G, and C. The client encrypts
the information using homomorphic encryption and the
server calculates the exact match over the encrypted data.
The outcome is the absence/presence of the specified
biomarkers, that is, an encryption of 1 if matched; oth-
erwise, an encryption of 0. Finally the client decrypts the
result by the secret key of homomorphic encryption.

Practical homomorphic encryption
Fully Homomorphic cryptosystems allow us to homo-
morphically evaluate any arithmetic circuit without
decryption. However, the noise of the resulting cipher-
text grows during homomorphic evaluations, slightly
with addition but substantially with multiplication.
For efficiency reasons, for tasks which are known in
advance, we use amore practical Somewhat Homomorphic
Encryption (SHE) scheme, which evaluates functions up
to a certain complexity. In particular, two techniques are
used for noise management of SHE: one is the modulus-
switching technique introduced by Brakerski, Gentry and
Vaikuntanathan [8], which scales down a ciphertext dur-
ing every multiplication operation and reduces the noise

by its scaling factor. The other is a scale-invariant tech-
nique proposed by Brakerski such that the same modulus
is used throughout the evaluation process [9].
Let us denote by [·]Q the reduction modulo Q into the

interval (−Q/2,Q/2]∩Z of the integer or integer poly-
nomial (coefficient-wise). For a security parameter λ, we
choose an integerM = M(λ) that defines theM-th cyclo-
tomic polynomial �M(X). For a polynomial ring R =
Z[X] /(�M(X)), set the plaintext space to Rt := R/tR
for some fixed t ≥ 2 and the ciphertext space to RQ :=
R/QR for an integer Q = Q(λ). Let χ = χ(λ) denote
a noise distribution over the ring R. We use the standard
notation a ← D to denote that a is chosen from the
distributionD.

The basic scheme
The following is a description of basic homomorphic
encryption scheme based on the hardness of (decisional)
Ring Learning with Errors (RLWE) assumption, which was
first introduced by Lyubashevsky et al. [10]. The assump-
tion is that it is infeasible to distinguish the following
two distributions. The first distribution consists of pairs
(ai,ui), where ai and ui are drawn uniformly at random
from RQ. The second distribution consists of pairs of the
form (ai, bi)=(ai, ais + ei) where ai is uniformly random
in RQ and s, ei are drawn from the error distribution χ .
To improve efficiency for HE, we use sparse secret keys s
with coefficients sampled from {0,±1} as in [11].

• RLWE.ParamsGen(λ): Given the security parameter
λ, choose an integer M, a modulus Q, a plaintext
modulus t with t|Q, and discrete Gaussian
distribution χerr . Output params ← (M,Q, t,χerr).

• RLWE.KeyGen(params): On the input parameters, let
N = φ(M) and choose a sparse random s from
{0,±1}N . Generate an RLWE instance
(a, b) = (a, [−as + e]Q ) for e ← χerr . We set the
secret key sk ← s and the public key pk ← (a, b).

• RLWE.Enc(m,pk): To encryptm ∈ Rt , choose a small
polynomial v and two Gaussian polynomials e0, e1
overR and output the ciphertext

ct ← (c0, c1)
= ((Q/t)m, 0) + (bv + e0, av + e1) ∈ R2

Q.

• RLWE.Dec(ct, sk): Given a ciphertext ct = (c0, c1),
outputm ← �(t/Q)·[ c0 + s · c1]Q�.

• RLWE.Add(ct, ct′): Given two ciphertexts ct = (c0, c1)
and ct′ = (c′0, c′1), the homomorphic addition is
computed by ctadd ←

([
c0 + c′0

]
Q ,

[
c1 + c′1

]
Q

)
.

Throughout this paper, we assume that the integer M is
a power of two so that N = M/2 and φM(X) = XN + 1.
We adapt the conversion and modulus-switching tech-
niques of [12]. The conversion algorithm changes an RLWE
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encryption of m = ∑
i miXi into an LWE encryption of

its constant term m0, and the modulus switching reduces
the ciphertext modulus Q down to q while preserving the
message. We note that an LWE ciphertext is represented
as a vector in Zq for some modulus q, and the decryption
procedure is done by an inner product of the ciphertext
and the secret key vector.

• RLWE.Conv(ct): Given a ciphertext ct = (c0, c1) with
c0 = ∑

i c0,iXi and c1 = ∑
i c1,iXi, output the vector

ct′ = (c0,0, c1,0,−c1,N−1, . . . ,−c1,1).
• LWE.ModSwitch(ct): Given a ciphertext ct ∈ Z

N+1
Q ,

output the vector ct′ ← �(q/Q) · ct� ∈ Z
N+1
q .

An RLWE ciphertext ct = (c0, c1) has the decryption
structure of the form c0 + c1 · s = (Q/t) · m + e and its
constant term is

c0,0 + c1,0s0 −
N−1∑
i=1

c1,N−isi = (Q/t) · m0 + e0.

It can be represented as an inner product of a vec-
tor (c0,0, c1,0,−c1,N−1,−c1,N−2, . . . ,−c1,1) and the desired
LWE secret key 	s = (1, s0, . . . , sN−1). Hence the output of
the conversion algorithm can be seen as an LWE encryp-
tion of m0. It is also easy to check that if ct ∈ Z

N+1
Q

satisfies 〈ct,	s〉 = (Q/t)·m+e (mod Q), then the output of
LWE.ModSwitch algorithm satisfies 〈ct′,	s〉 = (q/t) ·m+ e′
(mod q) for some e′ ≈ (q/Q) · e. These techniques have
been proposed for an efficient bootstrapping [12], but
they will play totally different roles in our application.
Finally an LWE ciphertext of modulus q can be decrypted
by 	s as follows.

• LWE.Dec(ct, sk): Given a ciphertext ct ∈ Z
N+1
q ,

output the valuem ← �(t/q)·[ 〈ct,	s〉]q�.
If 〈ct,	s〉 = (q/t)·m+e (mod q) for some small enough e,

it returns the correct messagemmodulo t. More precisely,
the decryption procedure works if |te/q| < 1/2.

The Ring-GSW scheme
Gentry et al. [13] suggested a fully homomorphic encryp-
tion based on the LWE problem, where the message is
encrypted as an approximate eigenvalue of a ciphertext.
Ducas and Micciancio [12] described its RLWE variant.
The RGSW symmetric encryption scheme consists of the
following algorithms.

• RGSW.ParamsGen(·), RGSW.KeyGen(·): Use the same
parameter params and secret key s with the basic
RLWE scheme. Additionally set the decomposition
base Bg and exponent dg satisfying B

dg
g ≥ Q.

• RGSW.Enc(m, sk): To encryptm ∈ Rt , pick a matrix
a ∈ R2dg

Q uniformly at random, and
e ∈ R2dg 
 Z

2dg·n with discrete Gaussian

distribution χ of parameter ς , and output the
ciphertext

CT ←[b, a]+mG ∈ R2dg×2
Q

where b = −a · s + e and the gadget matrix

G =
(
I ‖ BgI ‖ . . . ‖ Bdg−1

g I
)T ∈ R2dg×2

Q for 2 × 2
identity matrix I.

Let WDBg(·) be the decomposition with the base Bg,
where the dimension of input vector is multiplied by
dg through this algorithm. The RGSW encryption of m
satisfies CT · (1, s) = m ·

(
1, s, . . . ,Bdg−1

g ,Bdg−1
g s

)
+ e.

Roughly, m is an approximate eigenvalue of WDBg(CT)

with respect to the eigenvector
(
1, s, . . . ,Bdg−1

g ,Bdg−1
g s

)
.

In [14], the hybrid multiplication between RGSW
ciphertexts and RLWE ciphertexts has been defined
as follows.

• Hybrid.Mult(CT, ct): Given an RGSW ciphertext
CT ∈ R2dg×2

Q and an RLWE ciphertext ct ∈ R2
Q

output the vector ct′ ← CTT · WDBg(ct).

If CT and ct are RGSW and RLWE encryptions of m
and m′, respectively, their multiplication ct′ is a valid
RLWE encryption ofmm′. For convenience, we will denote
Hybrid.Mult(CT, ct) algorithm by �, i.e., (CT, ct) ∈
R2dg×2

Q × R2
Q �→ CT� ct ∈ R2

Q.

Methods
Privacy-preserving database searching and extraction
Let us consider a database of a set of n tuples.
Each tuple consists of pairs (di,αi) for i = 1, . . . , n, where
di denotes a data-tag in the domain {0, 1, . . . , T − 1} and
αi represents the corresponding value attribute in a plain-
text space Zt\{0}.Note that all the tags should be distinct
from each other. For instance, in the case of personal infor-
mation database, αi may be the age of user whose identity
number is di.
Given a query tag d from a tag domain and a

query value α from a plaintext space, the matching
problem is to determine the existence of an index i
such that (d,α) = (di,αi). Now consider the follow-
ing simplified search query: select αi if there exists
an index i such that di = d; otherwise zero (⊥).
The purpose of this section is to store the database and
carry out this search query on the public cloud. The server
should learn nothing from encrypted query and any infor-
mation other than the final result should not be leaked
to user. Throughout this work, we will use semi-honest
(honest but curious) adversary model, which is a standard
assumption for evaluation of homomorphic encryption.
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Our main idea is the following encoding method of
database suitable for the efficient computation of equality
test and extraction:

DB(X) =
∑
i

αiXdi ∈ Zt[X] .

The user encrypts this polynomial with the RLWE
public-key encryption scheme and stores the ciphertext
ctDB in the server. At the query phase, given a query tag d,
the user encrypts the monomial X−d with the RGSW sym-
metric encryption scheme and sends the ciphertext CTQ to
the server. We assume that the RGSW encryption scheme
has the same secret key sk as the one of RLWE encryption
scheme.
Given two ciphertexts CTQ ← RGSW.Enc

(
X−d) and

ctDB ← RLWE.Enc(DB(X)), the server first performs their
multiplication to obtain an ciphertext, denoted by ctmult =
CTQ� ctDB. It follows from the previous section that ctmult
is a valid RLWE encryption of the polynomial

DB(X) · X−d =
∑
i

αiXdi−d ∈ Rt .

Since we use the cyclotomic polynomial φM(X) = XN + 1
of power-of-two degree, the polynomial ring R has the
property XN = −1. Thus, for any tag d, the constant term
of the polynomial DB(X) · X−d is αi if there is some index
i satisfying d = di, otherwise zero.
Now the server applies the RLWE.Conv algorithm on

ctmult to compute an LWE encryption ctconv of this con-
stant term. This conversion procedure not only prevents
the leakage of information that has not been queried but
also reduces the size of output ciphertext by half. In addi-
tion, the (optional) modulus-switching procedure can be
considered to get a ciphertext ctres with a smaller modulus
size and reduce the communication cost. Finally the user
decrypts this LWE ciphertext and gets the desired value
αi or zero (⊥). Algorithm 1 summarizes the procedure of
secure search-and-extraction.
Our method can be modified to support a secure com-

parison of data values using a hash (one-way) function. If
hashed values of αi are used as polynomial coefficients,
our method will return a hashed value of αi to the user
instead of αi. The user may check whether the resulting
value and the hashed query value are the same or not
without knowing information about database.

Comparison with related work
Equality test has been traditionally considered difficult
to perform on homomorphic encryption, because of its
large circuit depth [7, 15, 16]. They evaluate the equal-
ity test on each encrypted tuple of database, so at least
�(n) homomorphic operations are required for searching
on database of size n. In addition, Boneh et al. [17] does
not protect the database information to the users, that

Algorithm 1 Procedure of secure search-and-extraction
1: Database encryption: The data owner encodes the

genomic information as DB(X) and submits its
encryption to the server:

ctDB ← RLWE.Enc(DB(X)).

2: Query encryption: The user encodes the query tag d
and sends its encryption to the server:

CTQ ← RGSW.Enc
(
X−d

)
.

3: Evaluation phase: The server computes their multipli-
cation, and carries out the conversion and modulus-
switching operations:

ctmult ← Hybrid.Mult(CTQ, ctDB).
ctconv ← RLWE.Convert(ctmult).
ctres ← LWE.ModSwitch(ctconv).

Return the resulting ciphertext ctres to the user.
4: Decryption phase: The user decrypts the ciphertext

with the secret key and gets the desired value:
α ← LWE.Dec(ctres).

is, the whole database can be recovered by the resulting
ciphertext of a query. However, our method is very effi-
cient in parameter size and complexity since it requires
only a single hybrid multiplication.
One limitation of this method is that the tags di should

be bounded by ciphertext dimension N to construct the
encoding polynomial DB(X). Since the dimension N has
a significant influence on the performance of HE scheme,
too large value of N has an impractical impact on the
performance. In the next section, we will describe how
to overcome this problem in terms of the application to
genomic data.

Secure searching of biomarkers
We return to our main goal of task3: secure outsourc-
ing matching of a set of biomakers to encrypted genomes.
We describe how to encode and encrypt the genotype
information of VCF file in order to apply the privacy-
preserving database searching and extraction.
VCF file contains multiple genotype information lines,

where each of them consists of a triple (chi,posi, SNPsi)
of chromosome number, position, and a sequence of SNP
alleles. A chromosome identifier ch ranges from 1 to 22, X,
and Y. A non-negative integer pos represents the reference
positionwith the first base having position 1, and SNPs is a r
eference or alternate sequence in {A,T ,G,C}∗. A query from
user is also a triple of the same form and we aim to decide
absence/presence of this biomarker in the database file.
We represent the sex chromosomes X and Y as 0 and

23, respectively. Then we define an encoding function E :
Z × Z → Z by

(ch,pos) �→ d = ch + 24 · pos.
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In the following, we describe how to encode the SNPs.
For convenience we set the upper bound for the length
of SNPs, so let nSNP be the maximal number of refer-
ence (or alternate) alleles to be compared between the
query genome and user genome in the target database.
Each of SNP is represented by two bits as

A �→ 00, T �→ 01, G �→ 10, C �→ 11,

and then concatenated with each other. Next we pad with
1 to the left of the bit string in order to express the
staring position of SNPs. Finally it is zero-padded into a
binary string of length 	SNP = 2 · nSNP + 1, and we con-
vert it into an integer value, denoted by αi. If a single
nucleotide variant at the given locus is not known, then it
is encoded as 0-string. For example, ‘GC’ is encoded as a
bit string 1|10|11, which will be represented as an integer
1|10|11(2) = 27.
Now consider the case that we wish to encode the refer-

ence and alternate alleles together. Let αref
i and αalt

i denote
the integer encodings of nSNP reference alleles and nSNP
alternate alleles, respectively. Then we define an encod-
ing αi by the concatenation of two encodings, i.e., αi =
2	SNP · αref

i + αalt
i as an integer. Table 1 shows the format

of database file and illustrates some examples of encoded
genomic data.
A database file is encoded as a set of pair (di,αi) for

i = 1, . . . , n such that di = E(chi,posi) and αi is the
encoded integer of the i-th SNP allele string. Then the
encodings di and αi are regarded as data-tag and value

attribute, respectively. The data user constructs a polyno-
mial DB(X) = ∑

k ckXk such that

ck =
{

αi if k = di for some i,
α ← Zt otherwise.

The user encrypts the polynomial with the RLWE public-
key encryption scheme as described above.
The query genes are also encoded as a pair of integers

(d,α), however, we consider only the information of d is
encrypted using the RGSW symmetric encryption scheme,
that is, the user encrypts the monomial X−d.

Results and discussion
In this section, we explain how to set the parameters
and describe our optimization techniques for the imple-
mentation. We also present our results using the tech-
niques. The dataset was randomly selected from Personal
Genome Project. Our implementation is publicly available
on github [18].

How to set parameters
Since all the matching computation is performed on
encrypted data in the cloud, the security against a semi-
honest adversary follows from the semantic security of the
underlying HE scheme. The security of the homomorphic
encryption scheme relies on the hardness of the RLWE
assumption. We derive a lower-bound on the ring dimen-
sion as N ≥ λ+110

7.2 · log2Q to get λ-bit security level from
the security analysis of [11].

Table 1 The format of genome data and its encoding with nSNP = 10

CHROM POS d REF ALT α

1 161235340 3869648161 G A 12582916

1 161235596 3869654305 C T 14680069

1 161235657 3869655769 G T 12582917

1 161235981 3869663545 G A 12582916

1 161237503 3869700073 · TTTTTGT 21849

1 161237891 3869709385 G A 12582916

1 161238009 3869712217 G · 12582912

1 161238488 3869723713 A G 8388614

1 161238683 3869728393 G A 12582916

1 161238856 3869732545 T · 10485760

1 161239028 3869736673 AG · 37748736

1 161239142 3869739409 A G 8388614

1 161239346 3869744305 G T 12582917

1 161239470 3869747281 C T 14680069

1 161239788 3869754913 · AA 16

1 161239978 3869759473 C T 12582917

1 161240641 3869775385 TGAT · 740294656
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Given the ciphertext modulus Q, it follows from the
estimation of noise growth during evaluations [12] and
decryption condition that we get the upper bound on the
plaintext modulus t to ensure the correctness of decryp-
tion after computation. So we set t as the largest power-of-
two integer less than the upper bound. If the encodings of
the allele strings are too large, we divide them into smaller
integers so that each of them is smaller than t. Then
we repeat the algorithm to construct the corresponding
polynomials of each integer.

Optimization techniques
As we mentioned before, the ring dimension N needs
to be larger than the encoded integers di’s. However, the
encoded integers di from VCF files have bits size about 32,
while a dimension N with about 11 ≤ log2N ≤ 16 is con-
sidered appropriate for implementation of HE schemes to
achieve both security and efficiency. Hence direct appli-
cation of our method to the VCF file would yield an
impractical result.
For compression of tag data and its re-randomization,

we make the use of a pseudo random number genera-
tor H(·) which transforms a tag di into a pair of two
non-negative integers d∗

i and d†i less than N. Our imple-
mentation adopts SHA-3 and extracts log2N = 11 bits of
the hashed value for each of d∗

i and d†i .
We construct two polynomials

DB∗(X) =
∑
k

c∗kX
k , DB†(X) =

∑
k

c†kX
k

by the Algorithm 2. Note that for any 1 ≤ i ≤ n and
H(di) = (d∗

i , d
†
i ) ∈ {0, . . . ,N−1}2, the pair of constructed

polynomialsDB∗ andDB† satisfy αi = cd∗
i
+cd†i . The proce-

dure of database encoding for secure search of biomarkers
is described in Algorithm 2.

Algorithm 2 Encoding genomic data
1: c∗d∗

1
← α1 ∈ Zq, c†d†1

← α1 − c∗d∗
1

2: d∗
1 ∈ D∗, d†1 ∈ D†

3: for i ∈ {2, . . . , n} do
4: if d∗

i /∈ D∗and d†i /∈ D† then
5: c∗d∗

i
← αi ∈ Zq, c†d†i

← αi − c∗d∗
i

6: else if d∗
i ∈ D∗and d†i /∈ D† then

7: c†
d†i

← αi − c∗d∗
i

8: else if d∗
i /∈ D∗and d†i ∈ D† then

9: c∗d∗
i

← αi − c†
d†i

10: end if
11: d∗

i ∈ D∗, d†i ∈ D†

12: end for
13: return DB∗(X) = ∑

k c∗kX
k , DB†(X) = ∑

k c
†
kX

k

Let ct∗DB and ct†DB denote the ciphertexts of the poly-
nomials DB∗ and DB†, respectively. Similarly, given the
query encoding d, the user computes its randomized value
H(d) = (d∗, d†) and encrypts the two polynomials X−d∗

and X−d† . We denote the ciphertexts by CT∗
Q and CT†Q. The

server computes the hybrid multiplication to obtain the
ciphertexts

ct∗mult = CT∗
Q � ct∗DB, ct

†
mult = CT†Q � ct†DB.

Now let ct denote the ciphertext computed by the
homomorphic addition between ct∗mult and ct†mult. Finally
the server converts it into an LWE ciphertext and per-
forms the modulus-switching procedure as described
above. The Algorithm 3 describes the procedure of secure
search-and-extraction using our proposed optimization
techniques.

Implementation results
The use of variable type ‘int32_t’ accelerates the speed of
implementations and basic C++ std libraries, so we set
Q = 232 as the ciphertext modulus. We also set t = 211
as the modulus parameter of the plaintext space to ensure

Algorithm 3 Procedure of optimized secure search of
biomarkers
1: Database encryption: The data owner encodes the

genomic information asDB∗(X) andDB†(X). Then the
user submits the ciphertexts to the server:

ct∗DB ← RLWE.Enc(DB∗(X)),

ct†DB ← RLWE.Enc(DB†(X)).
2: Query encryption: The user encodes the query as

X−d∗ and X−d† . Then the user sends the ciphertexts
to the server:

CT∗
Q ← RGSW.Enc(X−d∗

),

CT†Q ← RGSW.Enc(X−d†).

3: Evaluation phase: The server computes their multipli-
cations:

ct∗mult ← CT∗
Q � ct∗DB, ct

†
mult ← CT†Q � ct†DB.

Let ct ← ct∗mult + ct†mult. The server converts it into
an LWE ciphertext and performs modulus-switching
operations:

ctconv ← RLWE.Convert(ct).
ctres ← LWE.ModSwitch(ctconv).

Return the resulting ciphertext ctres to the user.
4: Decryption phase: The user decrypts the ciphertext

with the secret key and gets the desired value:
α ← LWE.Dec(ctres).
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Table 2 Implementation results of secure searching of biomarkers

DB size nSNP
Complexity Storage

Query-enc DB-enc Eval Dec Query DB Result

10 K

2

3.247 ms

3.563 ms 0.018 s 0.004 ms

160 KB

3 MB 0.75 MB

5 7.212 ms 0.039 s 0.011 ms 6 MB 1.5 MB

10 14.813 ms 0.079 s 0.027 ms 12 MB 3 MB

100 K

2 21.424 ms 0.111 s 0.034 ms 17 MB 4.25 MB

5 42.415 ms 0.227 s 0.064 ms 34 MB 8.5 MB

10 99.921 ms 0.454 s 0.139 ms 68 MB 17 MB

4 M

2 0.745 s 3.954 s 1.171 ms 593 MB 148 MB

5 1.506 s 7.911 s 1.949 ms 1185 MB 296 MB

10 3.001 s 15.442 s 3.795 ms 2370 MB 593 MB

the correctness for the output ciphertext. We take the fol-
lowing parameters for Gadget matrix G: Bg = 128 and
dg = 5, so that they satisfy the condition Bdg

g ≥ Q.
Each coefficient of the secret key sk is chosen at ran-

dom from {0,±1} and we set 64 as the number of nonzero
coefficients in the secret key. As in the work of [12], we
considered the Gaussian distribution of standard devia-
tion σ = 1.4 to sample random error polynomials.
For the efficiency of homomorphic multiplication, we

also used the optimized library for complex FFT, i.e., the
Fast Fourier Transform in the West [19]. That is, we use
the complex primitive 2N-th root of unity rather than a
primitive root in a prime field of order Q. We measure a
running time of 0.804 s to set up the FFT environment at
dimension 2N = 212. The key generation of two schemes
takes about 0.247 ms in total.
Table 2 presents the time complexity and storage for

the evaluation of secure searching of biomarkers. All the
experiments were performed on a single Intel Core i5 run-
ning at 2.9 GHz processor. The chosen parameters provide
λ = 128 bits of security level.

Conclusions
In this work, we suggested an efficient method to securely
search the query tag and extract the corresponding
value from a database over hybrid GSW homomorphic
encryption scheme. We came up with a solution to the
secure outsourcing matching problem by using polyno-
mial encoding and extraction of desired value based on
the multiplication of an RGSW ciphertext and an ordinary
RLWE ciphertext. And then we applied this method to find
a set of biomarkers in DNA sequences.
Our solution shows the progress of cryptographic tech-

niques in terms of their capability can support real-world
genome data analysis in a cloud environment. We list a
few fascinating open problems to remain. First, we only
considered the semi-honest adversary model in this work.
Other tools such as homomorphic authenticated scheme

may lead to more efficient protocols in the malicious set-
tings. Another issue is to support k multiple queries while
maintaining the performance and communication cost
less than k times of a single query case. We expect to have
much faster performance by enabling a batching method.
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