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ABSTRACT Homomorphic encryption (HE) is one of promising cryptographic candidates resolving privacy
issues in machine learning on sensitive data such as biomedical data and financial data. However, HE-based
solutions commonly suffer from relatively high computational costs due to a large number of iterations in the
optimization algorithms such as gradient descent (GD) for the learning phase. In this paper, we propose a new
method called ensemble GD for logistic regression, a commonly used machine learning technique for binary
classification. Our ensemble method reduces the number of iterations of GD, which results in substantial
improvement on the performance of logistic regression based on HE in terms of speed and memory. The
convergence of ensemble GD based on HE is guaranteed by our theoretical analysis on the erroneous variant
of ensemble GD. We implemented ensemble GD for the logistic regression based on an approximate HE
scheme HEAAN onMNIST data set and Credit data set from UCI machine learning repository. Compared to
the standard GD for logistic regression, our ensemble method requires only about 60% number of iterations,
which results in 60–70% reduction on the running time of total learning procedure in encrypted state, and
30–40% reduction on the storage of encrypted data set.

INDEX TERMS Ensemble, gradient descent with errors, homomorphic encryption, privacy-preserving
logistic regression.

I. INTRODUCTION
Machine learning has received much attentions recently due
to its strong ability to solve various real world problems
in artificial intelligence, bioinformatics, medical sciences,
marketings and so on. In particular, machine learning can
extract useful information from big datawithout relyingmuch
on domain experts’ knowledge. For various machine learning
methodologies and their applications, see [26] and [40].

Among various machine techniques, the logistic regres-
sion is a popular one for classification due to that it is not
only simple enough to be applied to various problems but
also competitive to other nonlinear classification algorithms
in prediction accuracy. Moreover, the related loss function
defined as the negative log-likelihood of the logistic regres-
sion is known to have many desirable properties and is used
with more complicated classification algorithms such as the

gradient boosting [27]. See [23] for comparison of the logistic
regression with other machine learning algorithms.

Privacy has been an important issue in machine learn-
ing. Privacy-preserving machine learning deals with hiding
a person’s sensitive identity without losing the usability of
data. Sensitive identities include some private information
about persons, companies, and governments that have to
be suppressed before shared or published. Four practically
used methodologies for privacy preserving in machine learn-
ing are anonymization, perturbation, randomization and con-
densation [38], but loss of information is indispensable for
those methods. For overview of privacy-preserving methods,
refer to [48].

Applying cryptographic tools enables us to a way to pre-
vent the loss of information while preserving the privacy
during machine learning. Homomorphic Encryption (HE),
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which allows arithmetics over encrypted data without decryp-
tion, has gained a lot of attentions for preventing the leakage
of private information such as biomedical data (e.g., geno-
type/phenotype) and financial data (e.g., private asset) during
machine learning. Since one can compute circuits based on
HE without revealing any private information in an offline
stage, HE is regarded to be very appropriate cryptographic
solution for privacy issues in machine learning. There also
have been some researches exploiting other cryptographic
tools for privacy-preserving machine learning such as multi
party computation (MPC), but HE has relative advantages
compared to MPC in terms of matrix and vector operations
and the availability of offline-stage computations for total
learning procedure.

Besides the attractive functionality of HE in privacy preser-
vation, a bottleneck in application of HE to machine learning
is relatively high computational cost. When computing a
circuit for machine learning based on HE, the depth of the
circuit is the most important factor determining parameters
of HE, and consequently effects on the computational cost
of the homomorphic evaluation of the circuit. However, most
commonly used optimization algorithms of machine learning
such as gradient descent (GD) and Newton-Raphson methods
are iterative algorithms, and the depth of a circuit for machine
learning grows linearly to the number of iterations. In other
words, there exists a limitation on reducing the computational
cost of machine learning based on HE without decreasing
the number of iterations in the optimization algorithms for
the logistic regression. From this observation, we aimed to
develop a new method for machine learning starting from the
logistic regression, which requires lower number of iterations
compared to previous methods.

A. OUR CONTRIBUTION
We propose a new ensemble method for learning the logis-
tic regression which is much more efficient than the stan-
dard GD, especially when it is applied with homomorphic
encryption. We first define an ensemble variant of GD, called
ensemble GD, as an optimization algorithm of the logistic
regression. We show that our ensemble GD method requires
less iterations than the standard GD method to obtain a pre-
diction model sufficiently near to the optimal one, and the
reduction on the number of iterations consequently gives a
significant improvement on the performance of the logistic
regression based on HE in terms of speed and memory.

The GD algorithm for training of a logistic regression
model requires the evaluation of sigmoid. The sigmoid func-
tion is usually approximated by a polynomial to be efficiently
computed on HE system. Due to an approximation error,
we do not have the exact gradient and thus we should con-
sider an erroneous variant of ensemble GD which we call
ensemble GD with errors. We provide a theoretical result on
the convergence of ensemble GD with errors, which ensures
that the ensemble GD for the logistic regression based on
HE still works well even if some errors from the polynomial
approximation are added.

By implementing the ensemble GD for the logistic regres-
sion on some public datasets such as MNIST handwritten
digit dataset [3] and Credit dataset from UCI repository [1]
in unencrypted state, we experimentally show that our ensem-
ble method requires substantially less iterations compared to
the standard method to obtain a certain level of prediction
accuracy measured by area under receiver operating char-
acteristic (AUC). To measure the performance of ensemble
GD for the logistic regression based on HE, we applied an
approximate HE scheme HEAAN [15], which has shown
best performance on learning the logistic regression based
on HE [36]. For MNIST dataset, the ensemble GD for the
logistic regression based on HEAAN obtains 0.983 AUC
within 12 hours by running 14 iterations, while the standard
GD took more than 32 hours to obtain the same AUC by run-
ning 22 iterations. Since HEAAN does not allow exact com-
putations, the errors from approximate computations may
disrupt the convergence of ensemble GD in encrypted state.
However, our theoretical result on the ensemble GD with
errors verifies the convergence of the ensemble GD based
on HEAAN.

B. RELATED WORKS
Integrating Data for Analysis, Anonymization and SHaring
(IDASH), a national center for biomedical computing in
United States, has hosted a competition providing various
real-world problems related to biomedical privacy since
2014, and privacy-preserving logistic regression based on
HE has been adopted as one of the main tasks since last
year. Many of the cryptography research teams from all over
the world participated in the competition with various HE
schemes and libraries [11], [12], [15], [16], [19], [25], [32],
[33], [35]. Various optimization methods have been applied
to the logistic regression based on HE, such as GD [10],
[36], [37] and a simplified Hessian Newton Method [6],
and one of the submitted solutions exploited an approximate
closed-form of logistic regression [18]. A solution using
GD [36] based on the approximate HE scheme HEAAN [15]
showed the best performance among the submitted solu-
tions [2]. There also have been studies on privacy-preserving
logistic regression based on HE [4], [37]. In particular, [4]
focused on exploiting only additive homomorphic encryp-
tion (AHE) such as Paillier encryption [44]. Some other
HE-based researches evaluated the prediction phase of neural
networks [31], [34], [45].

MPC is another cryptographic primitive for secure com-
putation. It performs a secure protocol which allows sev-
eral parties to compute a certain function over their inputs
while keeping them private. SecureML [39] suggested
privacy-preserving machine learning methods based on the
two-party computation: one is a purely MPC-based solution,
and the other is a hybrid solution based on MPC and AHE.
The hybrid solution required much less communication over-
head but took a longer time for training compared to the
purely MPC-based solution. In addition, there have been a
few researches which evaluates deep neural networks using
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the MPC technique [39], [46]. However, MPC-based solu-
tions commonly assume the semi-honest model that there is
no collusion between parties.

There have been proposed various ensemble meth-
ods in machine learning including the logistic regres-
sion [21], [49], [50]. General ensemble methods for machine
learning were introduced [21] and an ensemble method on
feature selection for the logistic regression was proposed
in [49], but their aim is to provide a better estimator than the
maximum likelihood estimator (MLE) of the logistic regres-
sion, while our objective is to construct an algorithm finding
the MLE with less iterations. In [50], they proposed a parallel
stochastic GDmethod with both theoretical and experimental
analysis on statistical errors. However, their purpose was not
a privacy-preserving machine learning so that they did not
consider computational bottleneck due to HE.

C. ROAD MAP
In Section II, we give some backgrounds on the logis-
tic regression and homomorphic encryption. In Section III,
we propose our new ensemble GD for the logistic regres-
sion, and present a theoretical result on the convergence of
ensemble GD with errors. In Section IV, we provide exper-
imental results on ensemble GD for the logistic regression.
In Section V, we summarize our work and suggest some
follow-up studies of this work.

II. BACKGROUNDS
A. LOGISTIC REGRESSION FOR BINARY CLASSIFICATION
Machine learning (ML) is a generic term to learn something
from data that are assumed to be random. For a binary classi-
fication, the most common ML technique is (binary) logistic
regression. Let L = {(xi, yi)}1≤i≤n be a given dataset where
(xi, yi) ∈ Rd

× {−1, 1} for 1 ≤ i ≤ n. The goal of learning
the logistic regression is to find the optimal point β ∈ Rd

which maximizes the likelihood function
∏n

i=1 Pr(yi|xi) =∏n
i=1 1/(1 + exp(−yixTi β)) where the superscript T denotes

the transpose of a vector. Taking a logarithm, the equivalent
goal is to find β which minimizes

C(β) =
1
n

n∑
i=1

φ(yixTi β) (1)

where φ(z) := log(1 + exp(−z)). We call the negative
log-likelihood function C the logistic loss function of given
dataset L.
A popularly used optimization algorithm tominimizeC(β)

is a gradient descent (GD) algorithm. Let ∇C(β) be the
gradient vector of C(β) with respect to β. Let β(t) be the
value obtained at the t-th iteration of the GD algorithm. Then,
the GD algorithm updates β(t) by

β(t+1)
= β(t)

− γt∇C(β(t)), (2)

where γt > 0 is a prespecified learning rate for t ≥ 0. If
β(t)’s are contained in some compact subset D of Rd , then
it is known that β(t) converges to β̂ as t → ∞ with the

convergence rate O(ρt ) for some 0 < ρ < 1 [42], [43] since
the logistic loss function is strongly convex on D provided
the design matrix (x1, . . . , xn) ∈ Rd×n has a full-rank. Note
that ∇C(β) = 1

n

∑n
i=1 φ

(1)(yixTi β) · yixi where φ(1)(z) =
− exp(−z)/(1+exp(−z)) = −S(−z) for the sigmoid function
S(z) := 1/(1+exp(−z)). Therefore, Equation (2) is expressed
as

β(t+1)
= β(t)

+
γt

n

n∑
i=1

S(−zTi β(t)) · zi (3)

where zi := yiβ i for 1 ≤ i ≤ n. We denote β(t) after suffi-
cient number of iterations by a prediction model of logistic
regression.

B. HOMOMORPHIC ENCRYPTION
Homomorphic Encryption is a cryptosystem which allows
arithmetic operations such as an addition and a multiplication
over encrypted data without decryption process. From this
attractive property which has not been achieved in any other
cryptosystems, HE is regarded to be a promising solution
which prevents private information leakage during analy-
ses on sensitive data such as biomedical data and financial
data. A number of HE schemes [7]–[9], [15]–[17], [22],
[24], [25], [29], [30] have been suggested following Gentry’s
blueprint [28], and researches on various real-world applica-
tions of HE such as the logistic regression [6], [18], [36], [37],
prediction phase of deep neural network [31], [34], cyber
physical system [14] have been progressed until recently.

An HE scheme basically consists of key generation,
encryption, decryption, and homomorphic evaluation (addi-
tion and multiplication) algorithms:
• Setup(λ,L). For inputs security parameter λ and level

parameter L, output the parameters params of the given
HE scheme determined by λ and L.

• KeyGen(params). Output the secret key sk, the public
key pk, and the (public) evaluation key evk.

• Encpk(m). For an input plaintext m, output an encryp-
tion ct of m, i.e., Decsk(ct) = m.

• Decsk(ct). For an input ciphertext ct, output the decryp-
tion m of ct.

• Addevk(ct, ct′). For encryptions ct, ct′ of m,m′, output
an encryption ctadd of m+m′.

• Multevk(ct, ct′). For encryptions ct, ct′ ofm,m′, output
an encryption ctmult of m ·m′.

Note the above HE scheme only supports homomorphic eval-
uations of an L-depth circuit. In addition, the level parameter
L is the most significant factor on the performance of HE,
including the speed of algorithms and the size of public
key and a ciphertext, since it determines the size of HE
parameters.

Most of the HE schemes allow exact computations. In con-
trary, an HE scheme HEAAN [15] allows an approximate
computations of real numbers. HEAAN is known to be per-
fectly fit in real-world applications since most computations
in real-world applications are approximate computations.
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By abandoning exact computations, HEAAN obtains a lot
of advantages in ciphertext/plaintext ratio and speed of
algorithms.

C. GRADIENT DESCENT WITH ERRORS
After the IDASH 2017 competition on the privacy-preserving
logistic regression for biomedical data, HE has been rec-
ognized as a very attractive cryptographic primitive for
privacy-preserving machine learning including the logistic
regression. However, convergence theorems on the standard
GD cannot be applied to interpret the nice performance
of machine learning based on HE. For computational effi-
ciency of HE, an approximate polynomial is usually exploited
instead of the sigmoid function S(x) in case of the logistic
regression [36], which occurs an error in each iteration. Fur-
thermore, in case of HEAAN which supports approximate
arithmetics, not exact computations, a small error is added
in every arithmetic operation. As a result, when running
GD based on HE, one should consider the erroneous GD as
following:

β(t+1)
= β(t)

− γt∇C(β(t))+ e(t) (4)

where C is a loss function and e(t) is a small error added
during the t-th iteration. We will call this erroneous variant
of GD by GD with errors.

Theoretical results on the convergence of GD with errors
have been proposed in the field of study on low-precision
(stochastic) gradient descent. In low-precision GD, only few
most significant bits of β(t) are stored in the memory during
each GD iteration, so the discarded least significant bits
actually represent an error e(t) in Equation (4). In 2015,
De Sa et al. [20] proposed theoretical results on the conver-
gence of erroneous stochastic gradient descent (SGD) with
martingale-based analysis. They showed that the probabil-
ity that the estimation in the t-th iteration is not contained
in a small neighborhood of the optimal point β̂ is O(1/t).
Recently, Songet al. [47] proposed similar theoretical results
on convergence rate of GD with errors with a different
approach. They showed that, when β(t) is updated by GD
with errors, β(t) converges into some sufficiently small neigh-
borhood of the optimal point β̂. Let D be a sufficiently large
compact subset ofRd so that every β(t) for t ≥ 0 is contained
in D. Note that the size of D will depend on the choice of the
initial β(0). When assuming the following three conditions
1) C : Rd

→ R≥0 is differentiable,
2) ∇C : Rd

→ Rd is L-Lipschitz over D for a constant
L > 0, i.e., ‖∇C(β)−∇C(β ′)‖ ≤ L · ‖β − β ′‖ for all
β,β ′ ∈ D, and

3) C : Rd
→ R≥0 is `-strongly convex over D for a

constant ` > 0, i.e.,
(
∇C(β)−∇C(β ′)

)
· (β − β ′) ≥

` · ‖β − β ′‖2 for all β,β ′ ∈ D,
then the following properties hold:
Lemma 1 ( [47], Th. 2): If γk ≤ L−1 and ‖ek‖2 ≤

1
2‖γk · ∇C(β

(k))‖2 for 0 ≤ k < t , then it holds that C(β(t))−

C(β̂) ≤ L
2 · ‖β

(0)
− β̂‖2 ·

∏t−1
k=0

(
1− γk`

2

)
.

Lemma 2 ( [47], Th. 3): For a fixed learning rate 0 <

γt = γ ≤ L−1 and for some errors et ∈ Rd with a bound
‖et‖ ≤ E , let X = {β ∈ D : ‖γ · ∇C(β)‖2 ≤ 2 · E2

}

be a compact subset of Rd . If β(t0) ∈ X for some t0 ≥ 0,
then it is satisfied that C(β(t)) ≤ M for all t > t0 where
M = supβ∈X {C(β)} +

1
2γ E

2.
Remark 1: Combining Lemma 1 and Lemma 2, β(t) con-

verges to β̂ with the convergence rate O(ρt ) for 0 < ρ = 1−
γ `
2 < 1 until entering X = {β ∈ D : ‖γ · ∇C(β)‖2 ≤ 2 ·E2

},
and then oscillates in Y := {β ∈ D : C(β) ≤ M} ⊃ X .
Note that both compact sets X and Y converges to a point
set {β̂} as E → 0. Namely, X and Y can be sufficiently
small sets containing β(t) by controlling the upper bound of
errors E .
Remark 2: The fixed learning rate condition in Lemma 2

is actually not a necessary condition for Lemma 2. To be
precise, the condition 0 < γt = γ ≤ L−1 can be relaxed
to 0 < γ ≤ γt ≤ L−1 for t ≥ 0. In this case, the lemma also
holds under the same definition of X .

III. ENSEMBLE APPROACH FOR PRIVACY-PRESERVING
LOGISTIC REGRESSION
In this section, we propose the ensemble GD method, and
then apply it to the logistic regression. We claim that the
ensemble method perfectly fits to homomorphic encryption,
by showing that ensemble GD reduces the expected number
of iterations compared to standard GD. The level parameter L
(see Section II-B) is very crucial factor on the efficiency
of homomorphic encryption since it determines the size
of whole parameters of homomorphic encryption. Namely,
the level parameter L significantly effects the public key
size, the ciphertext size, and the speed of all algorithms.
The important point is that the level parameter L linearly
grows in the number of iterations, i.e., L = O(t) where t
denotes the total number of iterations. As a result, we are able
to conclude that reducing the number of iterations through
ensemble GD would lead to substantial enhancement on the
performance of privacy-preserving logistic regression based
on homomorphic encryption.

We first present our ensemble GD algorithm and show that
the expected number of iterations asymptotically decreases
compared to standard GD. Then, we additionally analyze the
convergence of ensemble GD when it is homomorphically
computed based on an approximate HE scheme HEAAN.
In the convergence analysis we consider the erroneous variant
of ensemble GD, which is called ensemble GD with errors,
and the analysis consequently justifies that an output of
ensemble GD for the logistic regression based on the approx-
imate HE scheme HEAAN is very close to the optimal point
for proper settings on HEAAN parameters and polynomial
approximation of sigmoid.

A. ENSEMBLE GRADIENT DESCENT
Let L = {(β i, yi)}1≤i≤n be a given dataset of size n. Let
β̂(L,β0, t) denotes the estimation of β obtained after t
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FIGURE 1. A simple description of ensemble gradient descent.

iteration of the gradient descent algorithm with the initial
β0 and data L. Suppose n = Bm for some positive integers
B and m, and then we split L into B many disjoint subsets
L1,L2, . . . ,LB of size m. The proposed method so-called
ensemble GD is to estimate β by

β̂
B
t =

1
B

B∑
b=1

β̂(Lb,βb0, t),

where βb0 are random initial solutions. To put it simply,
ensemble GD is to run standard GD on each partial dataset
Lb with a random initial βb0 and then take an average
on resulting solutions β̂(Lb,βb0, t) from each of the par-
tial datasets, as described in Fig. 1. Note that those initials
{βb0}1≤b≤B are usually randomly chosen from some bounded
subset of Rd . Our ensemble GD algorithm is described
in Algorithm 1.

Algorithm 1Ensemble Gradient Descent (Ensemble GD)
Input: Partition {Lb}1≤b≤B of training data L with loss

functions {Cb}1≤b≤B, learning rates γk ,
the number of iterations t , random initials
{βb0}1≤b≤B

Output: Ensemble estimator β̂
B
t at t-th iteration

1 for b = 1, 2, . . . ,B do
2 for k = 0, 1, . . . , t − 1 do
3 βb(k+1)← βbk − γk∇Cb(βbk )
4 end
5 end
6 β̂

B
t ←

1
B

∑B
b=1 βbt ;

Our ensemble GD method is applicable to learning the
logistic regression, i.e., each loss function Cb in Algorithm 1
is the logistic loss function for a partial dataset Lb. In this

case, Cb(β) = 1
m

∑
(β i,yi)∈Lb

φ(zTi β) and ∇Cb(β) =
−

1
m

∑
(β i,yi)∈Lb

S(−zTi β) · zi where zi = yiβ i for 1 ≤ i ≤ n

and |Lb| = m for 1 ≤ b ≤ B.

B. STATISTICAL GUARANTEE OF ENSEMBLE
GRADIENT DESCENT
The motivation of ensemble GD is as follows. Let β̂(L) be
the minimizer of the empirical risk based on data L. That
is, β̂(L) is the target we want to find. Note that β̂(L)

approx
∼

N (β∗, 6/n) for the true parameter β∗ and some positive def-
inite matrix6. Thus, it suffices to find a solution β̃ satisfying
β̃

approx
∼ N (β∗, 6/n) so that β̂(L) and β̃ are asymptotically

equivalent.
If loss functions corresponding to Lb for 1 ≤ b ≤ B are

strongly convex and γt ≤ L−1 for all t ≥ 0, then it holds that

‖β̂(Lb,βb0, t)− β̂(Lb)‖ = O(ρt ). (5)

for some 0 < ρ < 1 [41], [43]. It is well known that the
minimizers for each of the partial data sets {β̂(Lb)}1≤b≤B are
independent, and follow a normal distribution

β̂(Lb)
approx
∼ N (β∗, 6/m) (6)

asymptotically for some positive definite matrix 6. By (5)
and (6), we have

β̂(Lb, θb0, t)
approx
∼ N (β∗, 6/m)

when t > O(logm). Thus, we expect

β̂
B
t
approx
∼ N (β∗, 6/n). (7)

For the standard GD algorithm, we need t > O(log n) for
β̂(L,β0, t) to be around 1/

√
n neighborhood of β∗, but we

only need t > O(logm) for the ensemble GD algorithm.
Note that our argument is valid only when (6) is valid.

Hence, m should not be too small. It is known that if
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B = o(
√
n), the ensemble GD method is asymptotically

equivalent to standard GD [5], [13], [51]. When n is not
sufficiently large enough, we may use bootstrap samples
for Lb, i.e., choose partial sets {Lb}1≤b≤B allowing over-
lapping. Even though there are no theoretical guarantees for
this estimator, we expect that it works quite well in practice.
In this case, the number of operations for each iteration would
increase compared to the case of standard GD. However,
it still gives an advantage on efficiencywhen evaluating based
on homomorphic encryption, since the total computational
cost ismore significantly effected by the depth parameter than
the number of operations in each iteration.
Remark 3: If the initials {βb0}1≤b≤B are chosen in

some bounded subspace of Rd , then all the estimations
β̂(Lb,βb0, t) for t ≥ 0 and 1 ≤ b ≤ B are included in
some compact subset D ∈ Rd . As a result, we are also able
to argue (5) in case of the logistic regression since a logistic
loss function is strongly convex on the compact set D.

C. ENSEMBLE GD WITH ERRORS AND ITS CONVERGENCE
As mentioned in Section II-C, a polynomial approximation
of the sigmoid function S(x) occurs a small error in each
iteration of ensemble GD. Therefore, if we run ensemble
GD described in Algorithm 1 based on HE, we should con-
sider GD with errors instead of standard GD when updating
β̂(Lb,βb0, t) for each 1 ≤ b ≤ B. Note that those errors can
be controlled by the quality of the polynomial approximation.

In this subsection, we propose a theoretical result on the
convergence rate of ensemble GD with errors. Since the size
of error does not converge to 0 as iterations progress, the exact
convergence of the ensemble estimation β̂

B
t to the optimal

point β̂(L) never happens. Therefore, our aim is to prove that
β̂
B
t converges into a sufficiently small set containing β̂(L)

with proper convergence rate, which is the best we are able to
achieve.

Using the notations in the previous subsection, ensemble
GD with errors is similarly defined by

β̂
B
t =

1
B

B∑
b=1

β̂(Lb,βb0, t),

where β̂(Lb,βb0, t) is the estimation obtained after t itera-
tions of GD with errors, instead of standard GD, with the
initial value βb0 and data Lb for each 1 ≤ b ≤ B. To be
precise, let Cb : Rd

→ R≥0 be the loss function corresponds
to the partial data set Lb, then β̂(Lb,βb0, t) is updated as

β̂(Lb,βb0, t + 1) = β̂(Lb,βb0, t)
− γt∇Cb(β̂(Lb,βb0, t))+ e

(t)
b

where e(t)b is an error vector satisfying ‖e(t)b ‖ ≤ E for some
E > 0 and γt = γ < L−1. Let D be a sufficiently large
compact subset of Rd so that β̂(Lb,βb0, t) is contained in D
for all t ≥ 0 and 1 ≤ b ≤ B. Let us assume that each loss
function Cb : Rd

→ R≥0 satisfies those three conditions

1) Cb : Rd
→ R≥0 is differentiable

2) ∇Cb : Rd
→ Rd is L-Lipschitz over D for a constant

L > 0
3) Cb : Rd

→ R≥0 is `-strongly convex over D for a
constant ` > 0

so that Lemma 1 and Lemma 2 are applicable to the case C =
Cb for each 1 ≤ b ≤ B. Note that a logistic loss function is
strongly convex on the compact setD, so these arguments are
also valid for logistic loss.
Now we analyze the convergence of ensemble GD apply-

ing some convergence theorems on GD with errors from [47]
(see Section II-C). Assume that an error in each iteration of
GDwith errors is bounded by E , i.e., ‖e(t)b ‖ ≤ E for any t ≥ 0
and 1 ≤ b ≤ B. Applying Lemma 1 for each loss function Cb
and the inequality |Cb(β)−Cb(β ′)| ≥ (`/2)·‖β−β ′‖2 which
holds for any β,β ′ ∈ Rd , it holds that

‖β̂(Lb,βb0, t)− β̂(Lb)‖ <
√
L
`

(
1−

γ `

2

) t
2

‖βb0 − β̂(Lb)‖

if β̂(Lb,βb0, k) /∈ Xb := {β ∈ D : ‖γ · ∇Cb(β)‖2 ≤ 2 · E2
}

for 0 ≤ k < t . Let tb0 be the smallest integer such that
β̂(Lb,βb0, tb0) enters into Xb, then the above inequality holds
for 0 ≤ t < tb0. For any t ≥ tb0, it is satisfied that
C(β̂(Lb,βb0, t)) ≤ Mb whereMb := supβ∈Xb{C(β)}+

1
2γ E

2

by Lemma 2. Since Cb(β̂(Lb,βb0, t))−Cb(β̂(Lb)) ≥ (`/2) ·
‖β̂(Lb,βb0, t)− β̂(Lb)‖2, we finally obtain

|̂β(Lb,βb0, t)− β̂(Lb)‖ ≤

√
2
(
Mb − Cb(β̂(Lb))

)
`

,

which holds for t ≥ tb0.
As discussed in Remark 1, the set Xb converges to a point

set {β̂(Lb)} and consequently Mb → Cb(β̂(Lb)) as E →
0. Therefore, for a sufficiently small E > 0, it holds that√
2
(
Mb − Cb(β̂(Lb))

)
/` = o(1/

√
m) for every 1 ≤ b ≤ B.

Under this setting, we are able to argue that β̂(Lb,βb0, t)
gets close to β̂(Lb) within the distance o(1/

√
m) for every

1 ≤ b ≤ B if t = O(logm). By (6), we obtain

β̂(Lb,βb0, t)
approx
∼ N (β∗, 6/m)

when t > O(logm), which consequently implies

β̂
B
t
approx
∼ N (β∗, 6/n)

as in the previous subsection. Therefore, ensemble GD with
errors shows asymptotically same quality with ensemble GD
if errors are sufficiently small. When each loss function Cb is
set to be a logistic loss for 1 ≤ b ≤ B, then the analysis can
be summarized as the following statement:
Theorem 1: For a given dataset L ⊂ Rd

× {±1} of size
n = Bm, let L1,L2, . . . ,LB be partitioned datasets of sizem,
and Cb be the logistic loss function corresponding to Lb
for 1 ≤ b ≤ B. Assume that the initials {βb0}1≤b≤B are
randomly chosen in some bounded subspace of Rd so that all
the estimations β̂(Lb, βb0, t) for t ≥ 0 and 1 ≤ b ≤ B lie in
some compact subset D ⊂ Rd . Then, the output of ensemble
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GD with errors on logistic losses {Cb}1≤b≤B for {Lb}1≤b≤B is
included in O(1/

√
n)-neighborhood of β̂(L) within O(logm)

iterations when the errors in each of the iterations are initially
set to be sufficiently small.
Remark 4: As stated in Remark 2, we stress that the fixed

learning rate condition is not essential: the fixed learning rate
condition 0 < γt = γ < L−1 can be substituted to 0 < γ ≤

γt < L−1 for t ≥ 0, i.e., only the lower bound γ of learning
rates γt is required.

IV. IMPLEMENTATION
In this section, we provide experimental results on ensemble
GD for the logistic regression. We first describe an approx-
imate HE scheme HEAAN for real numbers specifically,
which we applied for our experiments on ensemble GD for
the logistic regression based on HE. Although there exists an
additional small error in each homomorphic operations based
on HEAAN since it only supports approximate computations,
Theorem 1 in the Section III-C guarantees the convergence
of ensemble GD even with those errors. Next we present
the choice of datasets in our implementation, and the perfor-
mance of ensemble GD for the logistic regression in terms of
AUC, especially with a comparison to the standard GD.

A. AN APPROXIMATE HE SCHEME HEAAN
HEAAN proposed by Cheon et al. [15] in 2017 is a homo-
morphic encryption scheme which supports arithmetics of
approximate numbers while other schemes are used for exact
computations. To be precise, let ct be a HEAAN ciphertext of
a message polynomial m. Then, the decryption process with
a secret key sk is done as

Decsk(ct) = m+ e ≈ m

where e is a small error attached to the message polyno-
mial m. One can observe this approximate decryption as an
imperfect property. However, most of the computations in
real-world applications are significant digit arithmetics on
real numbers, not exact arithmetics. In this sense, the approx-
imation concept of HEAAN perfectly fits in the real world.
The scheme description of HEAAN is as following:
• Setup(λ, p,L).

- A security parameter λ, a based integer p and a level
parameter L are given as input. Set q` = p` for
` = 1, . . . ,L.

- Choose a power-of-two integer N = N (λ, qL), and
small distributions χkey, χenc, and χerr over the
2N -th cyclotomic ring R = Z[X ]/(XN + 1).

- Return params← (N , χkey, χenc, χerr).
• KeyGen(params).

- Sample s ← χkey. Set the secret key as sk ←
(1, s).

- Sample a← U (RqL ) and e← χerr. Set the public
key as pk ← (b, a) ∈ R2qL where b ← −a · s + e
(mod qL).

- Sample a′ ← U (Rq2L ) and e′ ← χerr. Set the

evaluation key as evk ← (b′, a′) ∈ R2
q2L

where

b′←−a′s+ e′ + qL · s2 (mod q2L).
• Encpk(m). For m ∈ R, sample v← χenc and e0, e1 ←
χerr. Output v · pk+ (m+ e0, e1) (mod qL).

• Decsk(ct). For ct = (c0, c1) ∈ R2q` , output m
′
= c0 +

c1 · s (mod q`).
• Add(ct, ct′). For ct, ct′ ∈ R2q` , output ctadd ← ct + ct′

(mod q`).
• Sub(ct, ct′). For ct, ct′ ∈ R2q` , output ctsub ← ct − ct′

(mod q`).
• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′0, c

′

1) ∈
R2
q` , let (d0, d1, d2) = (c0c′0, c0c

′

1 + c1c′0, c1c
′

1)
(mod q`). Output ctmult ← (d0, d1) + bq

−1
L · d2 · evke

(mod q`).
• RS`→`′ (ct). For a ciphertext ct ∈ R2q` at level `, output

ct′← b(q`′/q`) · cte (mod q`′ ).
Since each element m ∈ R is a Zq-coefficient polynomial,

not a real number, there should be a conversion between
polynomials and real-numbers for real number computations.
It is well known that the ring R[X ]/(XN + 1) is isomorphic
to CN/2 via the invertible mapping σ : f (X ) 7→ f (ζ iM )i∈T
where ζM is anM -th primitive root of unity inC and T = 〈5〉
is a proper subgroup of the multiplicative unit group Z×M
satisfying Z×M/T ' {1,−1}. Applying this isomorphism,
the encoding/decoding algorithms are constructed as follows:
• Ecd( Em;1). For a plaintext vector Em = (m1, . . . ,mN/2)

in CN/2 and a scaling factor 1 > 0, output
m ← bσ−1(1 · Em)e ∈ R where the rounding b·e is
component-wisely done.

• Dcd(m;1). For m ∈ R, output Em′ = 1−1 · σ (m) ∈
CN/2.

From the above encoding/decoding algorithms, we are able
to pack (N/2) complex numbers in a single polynomial. Since
R is a subspace of C, it is trivial that we are also able to
pack (N/2) real numbers. In summary, the plaintext space
of HEAAN is CN/2 which is a superset of RN/2, and every
element of CN/2 is encoded to a polynomial in R via Ecd(·)
before being encrypted.

B. EXPERIMENTAL SETTINGS
All experiments on our ensemble method were implemented
in C++ on Linux with Intel Xeon CPU E5-2620 v4
at 2.10GHz processor, and we used 8 threads for the accel-
eration of our experiments. The dataset choice and parameter
selection are as follows.

1) DATASET CHOICE
On experiments of ensemble GD for the logistic regression,
we chose MNIST dataset [3] from the MNIST database
of handwritten digits, which is one of the most commonly
used dataset for machine learning experiments, and Credit
dataset [1] from UCI machine learning repository. The orig-
inal MNIST dataset contains 10 classes from the number
1 to 10, so we extracted partial data corresponding to the
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FIGURE 2. An Iteration-AUC graph of the standard/ensemble methods for MNIST dataset.

FIGURE 3. An Iteration-AUC graph of the standard/ensemble methods for Credit dataset.

number 3 and 8 for a binary classification. In addition,
we compressed the number of features from 28 × 28 to
14 × 14 by taking an average for each 4-feature partition.
Consequently, the MNIST dataset consists of 11,982 samples
for training and 1,984 samples for test with 196 features. The
Credit dataset, which contains exactly two classes, consists
of 28,000 samples for training and 2,000 samples for test with
23 features.

2) PARAMETERS OF HEAAN
We applied an approximate HE scheme HEAAN to ensemble
GD for the logistic regression. Following the parameter selec-
tion strategy of [36] and [37], we first choose the total number
of iterations t for ensemble GD and set input parameters
p = 2, λ = 80, and L = 163 · t + 35. The rescaling
algorithm RS`→`′ (·) is repeated for 6 times in each iteration
of ensemble GD, and the bit length of a modulus is reduced
for 163 bits after each iteration. The dimension N of the
cyclotomic ringRwas chosen to be the smallest power-of-two
integer satisfying N ≥ λ+110

7.2 · log qL considering all known
attacks. The distributions χkey, χerr and χenc are equally set
as presented in the original paper [15] of HEAAN. A scaling
factor which determines the number of precision bits was set
to be 1 = 30.

3) PARAMETERS OF THE ENSEMBLE GD FOR
THE LOGISTIC REGRESSION
To accelerate the gradient descent process, we applied
Nesterov’s acceleration algorithm [41] and set learning rates

to be γk ≈ 10/(k + 1) as suggested in [36]. There exists two
additional factors we should consider for ensemble GD: the
number of partitions B, and the `∞-norm bound of random
initials τ , i.e., an absolute value of each component of βb0
for 1 ≤ b ≤ B is bounded by τ . For the MNIST dataset (resp.
Credit dataset), we set τ = 1 (resp. τ = 2). On this setting,
the optimal point β̂(L) is contained in {β ∈ Rd

: ‖β‖∞ ≤ τ }

for each dataset.

C. EXPERIMENTAL RESULTS
1) IMPACT OF THE ENSEMBLE METHOD.
To analyze an impact of the ensemble GD method for the
logistic regression accurately, we first compare the perfor-
mance of ensemble GD for the logistic regression to that of
standard GD in unencrypted state. As stated in Section III-B,
the theoretical analysis on the ensemble method does not hold
if the number of partitions is too large so that the number
of samples in each partial dataset gets too small. We exper-
imentally compared the performance of ensemble GD for
the logistic regression for various number of partitions, and
finally chose the number of partitions to be 8 and 16 for
MNIST and Credit datasets, respectively, which gave the best
results in practice. Figure 2 and Figure 3 represent graphs of
AUC with respect to the number of iterations for MNIST and
Credit datasets, respectively.

The terms ‘‘Ensemble 8’’ and ‘‘Ensemble 16’’ denote the
ensemble GD for the logistic regression with 8 partitions
and 16 partitions, respectively, and ‘‘Standard’’ denotes the
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TABLE 1. Performance of ensemble GD for the logistic regression based on HEAAN for MNIST and Credit datasets, and comparison with the standard GD.

standard GD for the logistic regression. Since initials are cho-
sen randomly, there exists a variance on AUC of each exper-
iment. Consequently, we ran the experiment for 20 times and
recorded the median of them in the graphs.

From the Iteration-AUC graphs, we can check that the
ensemble method enables to obtain certain AUC with
much smaller number of iterations compared to the stan-
dard method. For MNIST dataset (resp. Credit dataset),
the ensemble GD with 8 partitions (resp. 16 partitions)
obtains 0.98 AUC (resp. 0.66 AUC) within 11 iterations, but
the standard GD requires 19 iterations to get the same AUC.

2) PERFORMANCE OF ENSEMBLE GD FOR THE LOGISTIC
REGRESSION BASED ON HEAAN.
We now present the performance of ensemble GD for the
logistic regression based on an approximate HE scheme
HEAAN. We used HEML library [35], an HE library for
the logistic regression based on HEAAN, which follows the
methodology of [36] for packing a dataset into ciphertexts
and computing GD algorithm based on HEAAN. For each
partial dataset Lb for 1 ≤ b ≤ B, we ran the same HE algo-
rithm for GD with [36] with a random initial βb0 for t itera-
tions, and then took an average on outputs, the encryptions of
β̂(Lb,βb0, t) for 1 ≤ b ≤ B, in the last step. Consequently,
a prediction model we aim to obtain is outputted in encrypted
state.

The previous experiments were performed in unencrypted
state, and the exact sigmoid function S(x) was exploited for
the logistic regression. In contrary, we substitute the sigmoid
function by an approximate polynomial when applyingHE on
learning the logistic regression for computational efficiency.
For a polynomial approximation of sigmoid, we followed a
methodology of [36] and [37] using the Least Square Approx-
imation (LSA)method on a certain interval. For Credit dataset
we used a degree-5 approximate polynomial g5(x) = 0.5 −
0.19131 x + 0.0045963x3 − 0.0000412332 x5 of sigmoid
on the interval [−8, 8] which was initially proposed in [37].
Since the number of features of MNIST dataset is much
larger than that of Credit dataset, we need a larger interval
than [−8, 8] for an LSA polynomial approximation: a degree-
5 approximate polynomial h5(x) = 0.5 − 0.1167694 x +
0.0008352x3 − 0.0000021 x5 of sigmoid on the interval
[−20, 20] was exploited for Credit dataset. The following
table shows the performance of ensemble/standard GD for the

logistic regression based on HEAAN for MNIST and Credit
datasets. Enc and Learn denote the running time of encrypting
a dataset and total learning procedure, respectively. Storage
denotes the size of an encrypted dataset.
From Table 1, we can check that our ensemble method

shows a much better performance with respect to AUC com-
pared to the standard method. Ensemble GD for the logis-
tic regression based on HEAAN with 16 partitions obtains
0.983 AUC with 14 iterations, and the learning phase takes
about 12 hours. However, the standard GD for the logistic
regression based on HEAAN obtains 0.982 AUCwith 22 iter-
ations, which takes a much longer time for the learning phase.
In case of Credit dataset we can also check that ensemble
GD based on HEAAN shows much better performance than
standard GD based on HEAANwith respect to both AUC and
the running time of total learning procedure.
Note that AUCs recorded in Table 1 are a bit lower than

those recorded in Iteration-AUC graphs above. As stated in
Section III-C, since the sigmoid function is substituted by
approximate polynomials and HEAAN supports approximate
computations, we should consider the ensemble GD with
errors, not the standard ensemble GD. We can expect that
these errors occurred the decrease of AUC.

V. CONCLUSIONS
In this paper, we proposed an ensemble GD method for
the logistic regression, which reduces the expected number
of GD iterations compared to the standard GD. Since the
level parameter of HE linearly grows to the number of itera-
tions, our ensemble method consequently derived substantial
reduction in the running time of total learning procedure
in encrypted state and the storage of encrypted data. Since
a polynomial approximation on the sigmoid function and
approximate computations of HEAAN occurs a small error
in each iteration, we made a new theoretical analysis on the
convergence of ensemble GD with errors in section III-C,
which guarantees the performance of our ensemble logistic
regresion based on HE. In section IV, we also provided exper-
imental results of ensemble GD for the logistic regression
(based on HEAAN) with comparison to standard GD for pub-
lic datasets. The implementation results showed our ensemble
method requires much less iterations (thus requires much
less running time of total learning procedure and storage of
encrypted datasets).
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To show the efficiency of ensemble GD, we chose a
machine learning technique as the logistic regression and an
HE scheme as HEAAN. However, the ensemble method is
a general method: it is valid to not only the logistic loss
function but also any other loss functions which are strongly
convex on some compact domain, and any other HE schemes
are applicable. Theorem 1 on the convergence of GD with
errors in Section III-C, in fact, does not exactly fit into
our implementation since we additionally applied Nesterov’s
acceleration algorithm. Generalization of Theorem 1 to the
case of Nesterov’s accelerated GDwould be an important fol-
lowing work for our research. In addition, we experimentally
chose the optimal number of partitions for MNIST and Credit
datasets in this paper. Finding the strategy to choose the
optimal number of partitions in the ensemble method would
be very interesting following-up study on both statistics and
machine learning.
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