
A Full RNS Variant of
Approximate Homomorphic Encryption

Jung Hee Cheon1, Kyoohyung Han1, Andrey Kim1,
Miran Kim2, and Yongsoo Song3

1 Seoul National University, Seoul, Republic of Korea
{jhcheon, satanigh, kimandrik}@snu.ac.kr
2 University of Texas, Houston, United States

miran.kim@uth.tmc.edu
3 University of California, San Diego, United States

yongsoosong@ucsd.edu

Abstract. The technology of homomorphic encryption has improved
rapidly in a few years. The cutting edge implementations are efficient
enough to use in practical applications. Recently, Cheon et al. (ASI-
ACRYPT’17) proposed a homomorphic encryption scheme which sup-
ports an arithmetic of approximate numbers over encryption. This scheme
shows the current best performance in computation over the real num-
bers, but its implementation could not employ core optimization tech-
niques based on the Residue Number System (RNS) decomposition and
the Number Theoretic Transformation (NTT).

In this paper, we present a variant of approximate homomorphic encryp-
tion which is optimal for implementation on standard computer system.
We first introduce a new structure of ciphertext modulus which allows us
to use both the RNS decomposition of cyclotomic polynomials and the
NTT conversion on each of the RNS components. We also suggest new
approximate modulus switching procedures without any RNS composi-
tion. Compared to previous exact algorithms requiring multi-precision
arithmetic, our algorithms can be performed by using only word size
(64-bit) operations.

Our scheme achieves a significant performance gain from its full RNS im-
plementation. For example, compared to the earlier implementation, our
implementation showed speed-ups 17.3, 6.4, and 8.3 times for decryption,
constant multiplication, and homomorphic multiplication, respectively,
when the dimension of a cyclotomic ring is 32768. We also give experi-
mental result for evaluations of some advanced circuits used in machine
learning or statistical analysis. Finally, we demonstrate the practicability
of our library by applying to machine learning algorithm. For example,
our single core implementation takes 1.8 minutes to build a logistic re-
gression model from encrypted data when the dataset consists of 575
samples, compared to the previous best result 3.5 minutes using four
cores.

Keywords. Homomorphic encryption, approximate arithmetic, residue
number system.



1 Introduction

As the growth of big data analysis have led to many concerns about security
and privacy of data, researches on secure computation have been highlighted
in cryptographic community. Homomorphic Encryption (HE) is a cryptosystem
that allows an arbitrary circuit to be evaluated on encrypted data without de-
cryption. It has been one of the most promising solutions that make it possible to
outsource computation and securely aggregate sensitive information of individu-
als. After the first construction of fully homomorphic encryption by Gentry [21],
several researches [17, 7, 19, 18, 12] have improved the efficiency of HE schemes.

There are a few software implementations of HE schemes based on the Ring
Learning with Errors (RLWE) problem such as HElib [26] of the BGV scheme [7]
and SEAL [8] of the BFV scheme [6, 19]. These HE schemes are constructed
over the residue ring of a cyclotomic ring (with a huge characteristic) so they
manipulate modulo operations between high-degree polynomials, resulting in a
performance degradation. For an efficient implementation of polynomial arith-
metic, Gentry et al. [22] suggested a representation of cyclotomic polynomials,
called the double-CRT representation, based on the Chinese Remainder Theorem
(CRT). The first CRT layer uses the Residue Number System (RNS) in order to
decompose a polynomial into a tuple of polynomials with smaller moduli. The
second layer converts each of small polynomials into a vector of modulo integers
via the Number Theoretic Transform (NTT). In the double-CRT representation,
an arbitrary polynomial is identified with a matrix consisting of small integers,
and this enables an efficient polynomial arithmetic by performing component-
wise modulo operations. This technique became one of the core optimization
techniques used in the implementations of HE schemes [26, 8, 1].

Recently, Cheon et al. [12] suggested an HE scheme for arithmetic of approx-
imate numbers, called HEAAN. The main idea of their construction is to consider
an RLWE error as a part of an error occurring during approximate computations.
Besides homomorphic addition and multiplication, it supports an approximate
rounding operation of significant digits on packed ciphertexts. This approximate
HE scheme shows remarkable performance in real-world applications that require
arithmetic over the real numbers [29, 28].

However, the original scheme had one significant problem in the use of the
double-CRT representation. The rounding operation of HEAAN can be done by
dividing an encrypted plaintext by a ratio of two consecutive ciphertext moduli,
so a ciphertext modulus should be chosen as a power of two (or some prime).
This parameter choice makes it hard to implement the HE scheme on the RNS
representation. Consequently, the previous implementation [11] took a longer
time to perform homomorphic operations than other implementations of HE
schemes under the same parameter setting.

Our Contribution. In this paper, we present a variant of HEAAN based on the
double-CRT representation of cyclotomic polynomial ring elements. The main
idea is to exploit a basis consisting of some approximate values of a fixed base
as our moduli chain. Every encrypted message in HEAAN contains a small noise

2



from approximate computations. The approximate rounding operation of our
scheme yields an additional error from approximation, but it does not destroy
the significant digits of an encrypted message as long as the precision of the
approximate bases is higher than the precision of the plaintexts. In addition, by
selecting approximate bases satisfying some condition for the NTT conversion,
we take the advantages of double-CRT representation while maintaining the
functionalities of the original scheme.

We also introduce some modulus switching algorithms that can be computed
without RNS composition. To be more precise, some homomorphic operations
of the original HEAAN scheme (e.g. homomorphic multiplication) require non-
arithmetic operations such as modulus raising and reduction, which are difficult
to perform based on the RNS representation. As a result, the previous implemen-
tation required multi-precision arithmetics instead of working on typical word-
size integers in hardware architecture (e.g. 64-bit processor). Our new modulus
switching techniques can substitute the non-arithmetic operations in the previ-
ous scheme. These algorithms are RNS-friendly, that is, they can be represented
using only word operations without RNS composition.

We implemented our scheme and compared with the original one to show
the performance benefit from a full RNS system. For efficient implementation
in the NTT and modulus operations, we adapt harvey’s butterfly and barrett
modulus reduction techniques. Our full RNS variant improves the performance
of basic operations by nearly ten times compared to the original HEAAN [12, 11].
The decryption and homomorphic multiplication timings are reduced from 135
and 1,355 milliseconds down to 7.8 and 164 milliseconds, respectively, when
evaluating a circuit of depth 10.

We also present experimental results for homomorphic evaluation of analytic
functions and statistic functions. It took 160 milliseconds to compute the multi-
plicative inverse, exponential function, or sigmoid function with inputs of 32-bit
precision on 213 slots, yielding an amortized time of 20 microseconds per slot.
In the case of statistic functions, it took 307 and 518 milliseconds to obtain the
mean and variance of 213 real numbers, respectively.

Finally, we implemented a variant of the gradient descent algorithm to show
that our HE library can perform complex computations in real-world applica-
tions. Our single-core implementation took about 1.8 minutes to obtain a logistic
regression model from homomorphically encrypted dataset consisting of 575 sam-
ples each of which has eight features and a binary class information, compared
to previous best result of 3.5 minutes using a machine with four cores [28].

Technical Details. Let N be a power-of-two integer and R = Z[X]/(XN+1) be
the ring of integers of the (2N)-th cyclotomic field. For a fixed base q, we choose
an RNS basis {q0, . . . , qL} which is a set of coprime integers of approximately
the same size as the base q. For an integer 0 ≤ ` ≤ L, a ciphertext at level-`
is a pair of polynomials in RQ`

= R/(Q` · R) for Q` =
∏`
i=0 qi. The rescaling

procedure transforms a level ` encryption of m into a level (`− 1) encryption of
q−1` ·m, which is an approximation of q−1 ·m with almost the same precision.
The original scheme is more flexible in choice of ciphertext modulus since it can

3



rescale a plaintext by an arbitrary number compared to the fixed base q of our
RNS variant. However, our scheme has a significant improvement in performance.

Our scheme can support the NTT representation of RNS decomposed poly-
nomials as the double-CRT representation in the BGV scheme [7, 22]. The NTT
conversion can be done efficiently when the approximate bases q`’s are prime
numbers satisfying q` ≡ 1 (mod 2N). We give a list of candidate bases to show
that there are sufficiently many distinct primes satisfying both conditions for
the double-CRT representation.

The homomorphic multiplication algorithm of HEAAN includes modulus switch-
ing procedures that convert an element of RQ into RP ·Q for a sufficiently large
integer P and switch back to the original modulus Q. These non-arithmetic op-
erations are difficult to perform on the RNS system, so one should recover the
coefficient representation of an input polynomial. For an optimization, we adapt
an idea of Barjard et al. [3] to suggest approximate modulus switching algo-
rithms with small errors. Instead of exact computation in the original scheme,
our approximate modulus raising algorithm finds an element ã ∈ RP ·Q satisfying
ã ≡ a (mod Q) and ‖ã‖ � P · Q for a given polynomial a ∈ RQ. Conversely,
the approximate modulus reduction algorithm returns an element b ∈ RQ such

that P · b ≈ b̃ for an input polynomial b̃ ∈ RP ·Q. These procedures give relaxed
conditions on output polynomials, but we can construct algorithms that can be
performed on the RNS representation. In addition, we show that the correctness
of the HE system is still guaranteed with some small additional error.

Related Works. There have been several studies [16, 15, 5, 9] about homo-
morphic arithmetic over real or integral numbers besides the HEAAN scheme.
However, these approaches do not support the rounding operation which is a
core algorithm in approximate computation, and consequently, the required bit-
size of a ciphertext modulus grows exponentially on the depth of a circuit to be
evaluated.

Many of HE schemes use a polynomial ring structure with large coefficients.
Some recent researches accelerated expensive ring operations by exploiting the
RNS representation. Bajard et al. [3] proposed a full RNS variant of the BFV
scheme [6, 19]. Their implementation could avoid the need of conversion between
RNS and coefficient representations of an ring element during homomorphic
computations. After that, Halevi et al. [25] presented a simpler method that
does not generate an additional noise. Based on this idea, one can implement
an HE scheme without any numerical library for big integer arithmetics. This
technique has been applied to the recent version (> v2.3.1) of SEAL [8].

Road-map. In Section 2, we review the basics of the HEAAN scheme and intro-
duce fast base conversion. In Section 3, we present a method to improve overall
homomorphic operations from RNS representation. In Section 4, we describe a
full RNS variant of HEAAN. Finally, Section 5 shows experimental results with
optimization techniques.

4



2 Background

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. We denote by 〈·, ·〉
the usual dot product of two vectors. For a real number r, bre denotes the nearest
integer to r, rounding upwards in case of a tie. For an integer q, we identify
Z∩ (−q/2, q/2] as a representative of Zq and use [a]q to denote the reduction of
the integer a modulo q into that interval. We use x← D to denote the sampling
x according to a distribution D and U(S) denotes the uniform distribution over
S when S is a finite set. We let λ denote the security parameter throughout the
paper: all known valid attacks against the cryptographic scheme under scope
should take Ω(2λ) bit operations. A finite ordered set B = {p0, p1, . . . , pk−1} of
integers is called a basis if it is pairwise coprime.

2.1 Approximate Homomorphic Encryption

Cheon et al. [12] proposed an HE scheme that supports an approximate arith-
metic on encrypted data. The main idea is to consider an error of homomorphic
operation (e.g. encryption, multiplication) as part of computational error in ap-
proximate computation.

For a power-of-two integer N , we denote by K = Q[X]/(XN +1) the (2N)-th
cyclotomic field and R = Z[X]/(XN + 1) its ring of integers. The residue ring
modulo an integer q is denoted by Rq = R/qR. The HEAAN scheme uses a fixed
base integer q and constructs a chain of moduli Q` = q` for 1 ≤ ` ≤ L. For a
polynomial m(X) ∈ K, a ciphertext ct is called an encryption of m(X) at level
` if ct ∈ R2

Q`
and [〈ct, sk〉]Q`

≈ m(X). Homomorphic operations between cipher-
texts of HEAAN can be done by the key-switching with special modulus suggested
in [22]. For input encryptions of m1(X) and m2(X) at a level `, their homomor-
phic addition and multiplication satisfy [〈ctadd, sk〉]Q`

≈ m1(X) + m2(X) and
[〈ctmult, sk〉]Q`

≈ m1(X) ·m2(X), respectively.
The main advantage of this scheme comes from its intrinsic operation called

the rescaling procedure. The rescaling algorithm, denoted by RS(·), transforms
a level ` encryption of m(X) into an encryption of q−1 ·m(X) at level (` − 1).
It can be considered as an approximate rounding operation or an approximate
extraction of the most significant bits of the encrypted plaintext. By reducing
the size of the plaintext, we can reduce the speed of modulus consumption in
the following computation.

For packing of multiple messages, there has been suggested a method to
identify an element of a cyclotomic field with a complex vector via a vari-
ant of the canonical embedding. Let ζ = exp(−πi/N) be a (2N)-th root of
unity in C. Recall that the canonical embedding of K is defined by a(X) 7→
(a(ζ), a(ζ3), . . . , a(ζ2N−1)). Note that there is no need to store all entries of σ(a)

to recover a(X) since a(ζj) = a(ζ2N−j). We denote by τ : K → CN/2 a variant
of the canonical embedding, defined by

τ : a(X) 7→ (a(ζ), a(ζ5), . . . , a(ζ2N−3))0≤j<N/2,

5



and use it as a decoding function for HEAAN. The inverse of this homomorphism
τ is used as the encoding function to pack (N/2) complex numbers in a single
polynomial.

This HE scheme can be applied to fixed-point arithmetic on real (complex)
numbers. We multiply a scale factor of q to a number z with finite precision
and use the value m = q · z for encryption. Then encryption of m will satisfy
[〈ct, sk〉]Q`

≈ q · z, which is an approximate and a scaled value of z. A product of
two encryptions of q ·z1 and q ·z2 will return an encryption of q2 ·z1z2, which is a
scaled value of z1 · z2 by q2. We can perform the rescaling procedure to maintain
the original scaling factor q.

2.2 The RNS Representation

Let B = {p0, . . . , pk−1} be a basis and let P =
∏k−1
i=0 pi. We denote by [·]B

the map from ZP to
∏k−1
i=0 Zpi , defined by a 7→ [a]B = ([a]pi)0≤i<k. It is a ring

isomorphism from the Chinese Remainder Theorem (CRT) and [a]B is called the
residue number system (RNS) representation of a ∈ ZP . The main advantage
of the RNS representation is to perform component-wise arithmetic operations
in the small rings Zpi , which reduces the asymptotic and practical computation
cost. This ring isomorphism over the integers can be naturally extended to a
ring isomorphism [·]B : RP → Rp0 × · · · × Rpk−1

by applying it coefficient-wise
over the cyclotomic rings.

2.3 Fast Basis Conversion

Brakerski [6] introduced a scale-invariant HE scheme based on the LWE prob-
lem, and Fan and Vercauteren [19] suggested its ring-based variant called BFV.
Recently, Barjard et al. [3] proposed a variant of the BFV scheme that maintains
the RNS representation of ciphertexts during homomorphic computation. This
scheme presents a new algorithm, called the fast basis conversion, to convert the
residue of a polynomial into a new basis that is coprime to the original basis.

More precisely, for a basis {p0, . . . , pk−1, q0, . . . , q`−1}, let B = {p0, . . . , pk−1}
and C = {q0, . . . , q`−1} be its subbases. Let us denote their products by P =∏k−1
i=0 pi and Q =

∏`−1
j=0 qj , respectively. Then one can convert the RNS repre-

sentation [a]C = (a(0), . . . , a(`−1)) ∈ Zq0 × · · · × Zq`−1
of an integer a ∈ ZQ into

an element of Zp0 × · · · × Zpk−1
by computing

ConvC→B([a]C) =

`−1∑
j=0

[a(j) · q̂−1j ]qj · q̂j (mod pi)


0≤i<k

,

where q̂j =
∏
j′ 6=j qj′ ∈ Z. We note that

∑`−1
j=0[a(j) · q̂−1j ]qj · q̂j = a+Q ·e for some

small e ∈ Z satisfying |a+Q · e| ≤ (`/2) ·Q. This implies that ConvC→B([a]C) =
[a+Q · e]B can be considered as the RNS representation of the integer a+Q · e
with respect to the basis B.

6



3 Approximate Bases and Full RNS Modulus Switching

The approximate HE scheme of Cheon et al. [12] has its own advantages in
arithmetic of approximate numbers. However, a ciphertext modulus could not
be chosen as a product of coprime integers, so its implementation [11] requires
expensive multi-precision modular arithmetic. In this section, we introduce an
idea to avoid the use of a power-of-two base ciphertext modulus and enable the
RNS decomposition in the HEAAN scheme. We also propose new algorithms to
switch a ciphertext modulus on the RNS components.

3.1 Approximate Basis

The main advantage of HEAAN comes from the rescaling algorithm RS(·). It allows
us to perform the rounding of an encrypted plaintext, that is, we can efficiently
convert an encryption of m into a ciphertext encrypting the scaled message
q−1 ·m. In the case of its application to fixed-point arithmetic, for example, we
multiply fixed-point numbers zi by a common scale factor of q to maintain the
precision of plaintexts. After homomorphic multiplication, we obtain an encryp-
tion of the product q2 · z1z2 of two numbers q · z1 and q · z2. Then we perform
the rescaling algorithm to get an encryption of q · z1z2 and maintain the original
scale factor q. For this reason, the ciphertext modulus should be chosen as a
power of a fixed base Q` = q` to have the same scaling ratio. This point made
it difficult to use the RNS representation on HEAAN.

To overcome this obstacle, we propose an idea to use an RNS basis consisting
of approximate values of a fixed base. In more detail, given the scale factor q and
bit precision η, we find a basis C = {q0, . . . , qL} such that q/q` ∈ (1−2−η, 1+2−η)
for ` = 1, . . . , L. This approximate basis allows us to use the RNS representation
of polynomials while keeping the functionality of the HE scheme. We set the
level ` ciphertext modulus as Q` =

∏`
i=0 qi, so that the ciphertext moduli in the

consecutive levels have almost the same ratio Q`/Q`−1 = q` ≈ q. The rescaling
algorithm with a factor of q` converts an encryption of m at level ` into an
encryption of q−1` ·m at level (`−1). This operation has an additional error from
the approximation of q, but we can manage the size of an error not to destroy
the significant digits of a plaintext. An approximation error is bounded by∣∣q−1` ·m− q−1 ·m∣∣ =

∣∣1− q−1` · q∣∣ · ∣∣q−1 ·m∣∣ ≤ 2−η ·
∣∣q−1 ·m∣∣ ,

so it does not destroy the significant digits of an encrypted plaintext when η is
sufficiently larger than the bit precision of an encrypted plaintext.

3.2 Approximate Modulus Switching

The use of an approximate basis enables an implementation of the HEAAN scheme
using the RNS representation. However, HEAAN includes some non-arithmetic op-
erations that cannot be directly implemented on the RNS components. Specif-
ically, homomorphic multiplication and rescaling procedure require an exact

7



modulus switching algorithm, and the key-switching technique for rotation and
conjugation also contains the same operation (see [12, 10] for details).

We remark that the goal of modulus switching algorithms in [12] can be
reduced to a problem that finds a ciphertext with a small error while keep-
ing the correctness of the HE scheme. In this section, we propose an idea
to approximately perform the modulus switching algorithms on the RNS rep-
resentation. A full RNS variant of HEAAN will be described in the next sec-
tion based on this method. Throughout this paper, we will denote by D =
{p0, . . . , pk−1, q0, . . . , q`−1}, B = {p0, . . . , pk−1}, and C = {q0, . . . , q`−1} an RNS

basis and its subbases, respectively, with P =
∏k−1
i=0 pi and Q =

∏`−1
j=0 qj .

Approximate Modulus Raising. Suppose that we are given the RNS repre-
sentation [a]C of an integer a ∈ ZQ. The purpose of the approximate modulus
raising algorithm, denoted by ModUp, is to find the RNS representation of an
integer ã ∈ ZPQ with respect to the basis D satisfying two conditions ã ≡ a
(mod Q) and |ã| � P ·Q. From the first condition [ã]C = [a]C , we only need to
generate the RNS representation of ã with the basis B and it can be done by
applying the fast conversion algorithm. See Algorithm 1 for a description of the
approximate modulus raising.

Algorithm 1 Approximate Modulus Raising

1: procedure ModUpC→D(a(0), a(1), . . . , a(`−1))
2: (ã(0), . . . , ã(k−1))← ConvC→B([a]C).
3: return (ã(0), . . . , ã(k−1), a(0), . . . , a(`−1)).
4: end procedure

As described in Section 2.3, the fast conversion algorithm in Algorithm 1
returns [a + Q · e]B ∈

∏k−1
i=0 Zpi for some integer e with |e| ≤ `/2 . Therefore,

the output of ModUp algorithm is the RNS representation of ã := a+Q · e with
respect to the basis D = B ∪ C, as desired.

Approximate Modulus Reduction. Contrary to the modulus raising al-
gorithm, the approximate modulus reduction algorithm, denoted by ModDown,
takes an RNS representation [b̃]D of an integer b̃ ∈ ZP ·Q as an input and aims

to compute [b]C for some integer b ∈ ZQ satisfying b ≈ P−1 · b̃.
We point out that the goal of approximate modulus reduction is reduced

to a problem of finding small ã = b̃ − P · b satisfying ã ≡ b̃ (mod P ). The
RNS representation [b̃]D is the concatenation of [b̃]B and [b̃]C . We first take
the first component [b̃]B = (b̃(0), . . . , b̃(k−1)), which is the same as [a]B for a =
[b̃]P ∈ ZP . Then we apply the fast conversion algorithm to compute the RNS
representation [ã]C of ã = a + P · e for some small e. Note that ã ≡ b̃ (mod P )
and |ã| � P · Q from the property of ConvB→C(·). Finally, we derive the RNS

8



representation of b = P−1 · (b̃ − ã) with respect to the basis C by computing(∏k−1
i=0 pi

)−1
·
(

[b̃]C − [ã]C

)
∈
∏`−1
j=0 Zqj . See Algorithm 2 for a description.

Algorithm 2 Approximate Modulus Reduction

1: procedure ModDownD→C(b̃
(0), b̃(1), . . . , b̃(k+`−1))

2: (ã(0), . . . , ã(`−1))← ConvB→C(b̃
(0), . . . , b̃(k−1))

3: for 0 ≤ j < ` do

4: b(j) =
(∏k−1

i=0 pi

)−1
· (b̃(k+j) − ã(j)) (mod qj).

5: end for
6: return (b(0), . . . , b(`−1)).
7: end procedure

Word Operations. In the rest of the paper, the arithmetic operations (e.g. ad-
dition and multiplication) modulo a “word-size” integer will be called the word
operations. Now suppose that pi’s and qj ’s are word-size integers. As men-
tioned before, the fast conversion algorithm ConvC→B([a]C) outputs the tuple(∑`−1

j=0[a(j) · q̂−1j ]qj · q̂j (mod pi)
)
0≤i<k

for q̂j =
∏
j′ 6=j qj′ . Each component can

be computed using the values [q̂−1j ]qj =
∏
j′ 6=j q

−1
j′ (mod qj) and [q̂j ]pi =

∏
j′ 6=j qj′

(mod pi) while avoiding the computation of big integers q̂j . In addition, if we
pre-compute and store these values, which depend only on the bases B and C,
then the computation cost of ConvC→B(·) algorithm can be reduced down to
O(k · `) word operations.

Complexity of Approximate Modulus Switching. Our modulus switching
algorithms have an advantage, in that they can be computed only using word
operations. For example, ModUpC→D([a]C) requires exactly the same computation
as ConvC→B([a]C), so its total complexity is bounded by O(k ·`) word operations.
The approximate modulus reduction algorithm needs to compute b(j) = P−1 ·
(b̃(k+j) − ã(j)) (mod qj) for 0 ≤ j < ` as well as the fast conversion algorithm.
The computation of b(j)’s can be done in O(`) word operations using the pre-

computable constants [P−1]qj =
(∏k−1

i=0 pi

)−1
(mod qj). Therefore, the total

complexity of ModDown is bounded by O(k · `+ `) = O(k · `) word operations.
The approximate modulus switching algorithms can be extended to algo-

rithms over the polynomial rings as

ModUpC→D(·) :

`−1∏
j=0

Rqj →
k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj ,

ModDownD→C(·) :

k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj →
`−1∏
j=0

Rqj

9



by applying them coefficient-wise. These operations require O(k · ` · N) word
operations where N is a degree of a power-of-two cyclotomic ring.

4 A Full RNS Variant of the Approximate HE

In this section, we propose a variant of HEAAN based on the full RNS representa-
tion. For simplicity, we choose a power-of-two integer N and consider the (2N)-th
cyclotomic field K = Q[X]/(XN+1) and its ring of integers R = Z[X]/(XN+1).
An arbitrary element of K is expressed as a polynomial with rational coefficients
of degree strictly less than N , and identified with the vector of its coefficients
in QN . The rounding operation on K and the modulo operation on R will be
defined by the coefficient-wise rounding and modulo operations, respectively. In
the following, we present a concrete description of a full RNS variant of HEAAN.

Setup(q, L, η; 1λ). A base integer q, the number of levels L, and the bit precision
η are given as inputs with the security parameter λ.

• Choose a basis D = {p0, . . . , pk−1, q0, q1, . . . , qL} such that qj/q ∈ (1 −
2−η, 1 + 2−η) for 1 ≤ j ≤ L. We write B = {p0, . . . , pk−1}, C` = {q0, . . . , q`},
and D` = B ∪ C` = {p0, . . . , pk−1, q0, . . . , q`} for 0 ≤ ` ≤ L. Let P =

∏k−1
i=0 pi

and Q =
∏L
j=0 qj .

• Choose a power-of-two integer N .

• Choose a secret key distribution χkey, an encryption key distribution χenc,
and an error distribution χerr over R.

• Let p̂i =
∏

0≤i′<k,i′ 6=i pi′ for 0 ≤ i < k. Compute the constants [p̂i]qj and

[p̂−1i ]pi for 0 ≤ i < k, 0 ≤ j ≤ L.

• Compute the constants [P−1]qj =
(∏k−1

i=0 pi

)−1
(mod qj) for 0 ≤ j ≤ L.

• Let q̂`,j =
∏

0≤j′≤`,j′ 6=j qj′ for 0 ≤ j ≤ ` ≤ L. Compute the constants [q̂`,j ]pi
and [q̂−1`,j ]qj for 0 ≤ i < k, 0 ≤ j ≤ ` ≤ L.

The constants [p̂i]qj and [p̂−1i ]pi are necessary to compute the conversion
ConvB→C`(·) in the ModDownD`→C`(·) algorithm. The constants [P−1]qj are also

used in the algorithm. On the other hand, the constants [q̂`,j ]pi and [q̂−1`,j ]qj are
used to compute ConvC`→B(·) for the ModUpC`→D`

(·) algorithm.
We choose an RNS basis D consisting of word-size integers, so that every

homomorphic arithmetic can be expressed using word operations (e.g. uint64 t).
The elements of B are called the special primes and used in the key-switching
procedure. They do not have to be close to q, but their product P should be large
enough to get a small key-switching error. The zero-level ciphertext modulus
Q0 = q0 is not necessarily approximate to the base integer q, but it should
be larger than the modulus of the encrypted plaintext for the correctness of
decryption.

10



KSGen(s1, s2). For given secret polynomials s1, s2 ∈ R, sample uniform elements

(a′(0), . . . , a′(k+L))← U
(∏k−1

i=0 Rpi ×
∏L
j=0Rqj

)
and an error e′ ← χerr. Output

the switching key swk as(
swk(0) = (b′(0), a′(0)), . . . , swk(k+L) = (b′(k+L), a′(k+L))

)
∈
k−1∏
i=0

R2
pi ×

L∏
j=0

R2
qj

where b′(i) ← −a′(i) · s2 + e′ (mod pi) for 0 ≤ i < k and b′(k+j) ← −a′(k+j) · s2 +
[P ]qj · s1 + e′ (mod qj) for 0 ≤ j ≤ L.

This procedure generates a switching key to convert a ciphertext with the
secret key s1 into a ciphertext encrypting the same message with the secret key
s2. If a′ is the element of RP ·Q such that [a′]D = (a′(0), . . . , a′(k+L)), then the
switching key swk can be seen as the RNS representation of (b′, a′) ∈ RP ·Q in
the basis D for b′ = −a′ · s2 + P · s1 + e′ (mod P ·Q).

KeyGen.

• Sample s← χkey and set the secret key as sk← (1, s).

• Sample (a(0), . . . , a(L))← U
(∏L

j=0Rqj

)
and e← χerr. Set the public key as

pk←
(
pk(j) = (b(j), a(j)) ∈ R2

qj

)
0≤j≤L

where b(j) ← −a(j) · s+ e (mod qj) for 0 ≤ j ≤ L.

• Set the evaluation key as evk← KSGen(s2, s).

The encryption key is the RNS representation of an RLWE sample (b =
−a · s+ e, a) ∈ R2

QL
in the basis CL. The evaluation key evk can be used to per-

form the relinearization operation during homomorphic multiplication. One can
generate additional public keys for more functionalities. For example, we need
to publish a rotation key (resp. conjugation key) to compute the permutation
(resp. conjugation) on plaintext slots as described in [12].

Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output the ciphertext

ct =
(
ct(j)

)
0≤j≤L ∈

∏L
j=0R

2
qj where ct(j) ← v · pk(j) + (m+ e0, e1) (mod qj) for

0 ≤ j ≤ L.

Decsk(ct). For ct =
(
ct(j)

)
0≤j≤`, output 〈ct(0), sk〉 (mod q0).

The encryption algorithm generates the RNS representation of a ciphertext
ct satisfying [〈ct, sk〉]QL

≈ m. Thus its decryption returns an approximate value
of the input plaintext. The encrypted plaintext should satisfy ‖m‖∞ ≤ q0/2 in
order to recover a correct value.

Add(ct, ct′). Given two ciphertexts ct =
(
ct(0), . . . , ct(`)

)
, ct′ =

(
ct′(0), . . . , ct′(`)

)
∈∏`

j=0R
2
qj , output a ciphertext ctadd =

(
ct

(j)
add

)
0≤j≤`

where ct
(j)
add ← ct(j) + ct′(j)

(mod qj) for 0 ≤ j ≤ `.

11



Multevk(ct, ct
′). Given two ciphertexts ct =

(
ct(j) = (c

(j)
0 , c

(j)
1 )
)
0≤j≤`

and ct′ =(
ct′(j) = (c

′(j)
0 , c

′(j)
1 )

)
0≤j≤`

, perform the following procedures and return a ci-

phertext ctmult ∈
∏`
j=0R

2
qj .

1. For 0 ≤ j ≤ `, compute

d
(j)
0 ← c

(j)
0 c
′(j)
0 (mod qj),

d
(j)
1 ← c

(j)
0 c
′(j)
1 + c

(j)
1 c
′(j)
0 (mod qj),

d
(j)
2 ← c

(j)
1 c
′(j)
1 (mod qj).

2. Compute ModUpC`→D`
(d

(0)
2 , . . . , d

(`)
2 ) = (d̃

(0)
2 , . . . , d̃

(k−1)
2 , d

(0)
2 , . . . , d

(`)
2 ).

3. Compute

c̃t = (c̃t
(0)

= (c̃
(0)
0 , c̃

(0)
1 ), . . . , c̃t

(k+`)
= (c̃

(k+`)
0 , c̃

(k+`)
1 )) ∈

k−1∏
i=0

R2
pi ×

∏̀
j=0

R2
qj

where c̃t
(i)

= d̃
(i)
2 · evk

(i) (mod pi) and c̃t
(k+j)

= d
(j)
2 · evk

(k+j) (mod qj) for
0 ≤ i < k, 0 ≤ j ≤ `.

4. Compute (
ĉ
(0)
0 , . . . , ĉ

(`)
0

)
← ModDownD`→C`

(
c̃
(0)
0 , . . . , c̃

(k+`)
0

)
,(

ĉ
(0)
1 , . . . , ĉ

(`)
1

)
← ModDownD`→C`

(
c̃
(0)
1 , . . . , c̃

(k+`)
1

)
.

5. Output the ciphertext ctmult = (ct
(j)
mult)0≤j≤` where ct

(j)
mult ← (ĉ

(j)
0 +d

(j)
0 , ĉ

(j)
1 +

d
(j)
1 ) (mod qj) for 0 ≤ j ≤ `.

We first generate an extended ciphertext (d0, d1, d2) that decrypts to the
product of the input plaintexts under the extended secret key (1, s, s2). As men-
tioned before, we use the evaluation key to transform d2 into a normal cipher-
text. Our homomorphic multiplication algorithm is somewhat more complicated
compared to the ordinary HEAAN because we switch the ciphertext moduli ap-
proximately using our approximate algorithms.

• RS(ct). For a level-` ciphertext ct =
(
ct(j) = (c

(j)
0 , c

(j)
1 )
)
0≤j≤`

∈
∏`
j=0R

2
qj ,

compute c
′(j)
i ← q−1` ·

(
c
(j)
i − c

(`)
i

)
(mod qj) for i = 0, 1 and 0 ≤ j < `. Output

the ciphertext ct′ ←
(
ct′(j) = (c

′(j)
0 , c

′(j)
1 )

)
0≤j≤`−1

∈
∏`−1
j=0R

2
qj .

For a ciphertext ct encrypting a plaintext m, the rescaling algorithm returns
an encryption of q−1` ·m ≈ q−1 ·m at level (`−1). The output ciphertext contains
an additional error from the approximation of q to q` and the rounding of the
input ciphertext. The correctness of our scheme will be shown in Appendix A
with noise analysis.

12



5 Software Implementation

In this section, we provide experimental results with parameter sets. In our
implementation, every number is stored as an unsigned 64-bit integer, which
is standard on computer system. All homomorphic operations provided in our
scheme are expressed as word size operations defined on this standard variable
type, so our HE library does not depend on any multi-precision numerical library.
Our implementation was performed on a machine with an Intel Core i5 running
at 2.9 GHz processor on a single-threaded mode, and its source code is publicly
available at github https://github.com/HanKyoohyung/FullRNS-HEAAN.

We adapt the discrete Fourier transformation to transform a polynomial
represented by its coefficient vector into the vector of evaluations at primitive
roots of unity modulo a prime. The modulus switching algorithms require the
coefficient representation, but we can manipulate the NTT representation for
arithmetic operations. Consequently, the complexity of homomorphic operations
mainly depends on this transformation between two representations. We imple-
mented the NTT conversion and its inverse based on the butterfly techniques of
Cooley-Tukey [13] and Gentleman-Sande [20], respectively. We also optimized
these algorithms using Montgomery modular multiplication and butterfly algo-
rithms [27] and Barrett reduction algorithm [4].

5.1 Parameter Sets and Benchmark

We propose parameter sets for multiplicative depths L from 5 to 15 in Table 1.
It also shows experimental results for encryption, decryption, addition, scalar-
multiplication, and multiplication (together with the rescaling operation) of the
original implementation HEAAN and our RNS variant denoted by HEAAN-RNS.

The smallest ciphertext modulus q0 should be larger than an encrypted
plaintext for the correctness of the decryption circuit. We use log q0 ≈ 61 and
log qi ≈ 55 for i = 1, . . . , L. We present a list of primes in Appendix B. For a
fair comparison, we choose a power-of-two integer QL of the same bit size as the
implementation of the original HEAAN. The coefficients of error polynomials are
sampled from the discrete Gaussian distribution of standard deviation σ = 3.2
and a secret key is chosen randomly from the set of signed binary polynomials
with the Hamming weight h = 64. We used the estimator of Albrecht at el. [2]
to guarantee that the proposed parameter sets achieve at least 80-bit security
level against the known attacks against the LWE problem.

Our implementation of the RNS variant improved the performance of ba-
sic operations by approximately ten times compared to the original HEAAN [12,
11]. For example, the encryption, decryption, addition, and multiplication are
speedups of 9.1, 17.3, 7.4, and 8.3 times, respectively, when evaluating a circuit
of depth L = 10.

In Appendix A, we analyze the growth of errors and provide theoretical
upper bounds on the growth during homomorphic operations. Fig. 1 depicts the
bit precisions of an encrypted plaintext during an evaluation of homomorphic

13



Table 1: Comparison of experimental results of HEAAN and HEAAN-RNS

Variant L N log q dlogQLe
Enc Dec Add Cmult Mult&RS

(ms) (ms) (ms) (ms) (ms)

HEAAN

5 215

55

336 332 106 30 204 740

10 215 611 530 135 32 281 1,355

15 216 886 1,465 344 70 762 4,169

HEAAN-RNS

5 215

55

336 31 4.6 2.9 25 85

10 215 611 58 7.8 4.3 44 164

15 216 886 177 10.0 15.5 125 563

multiplications for L = 10 with the parameter set in Table 1. We also provide
an empirical result on the precision loss.

0 1 2 3 4 5 6 7 8 9 10
24

26

28

30

32

34

36

38

Consumed level

O
u

tp
u

t
p

re
ci

si
on

(b
it

)

Theoretical lower bound

Experimental result

Fig. 1: Variation of bit precision

Our scheme exploits the approximate rounding operation which introduces
an additional error. We observed that the precision of an output value is reduced
by about three bits compared to the original HEAAN scheme. However, this small
gap is not an critical issue in most of applications where an approximate result
is sufficient for their purposes. In addition, we can easily increase the precision
by setting a larger basis while still keeping advantages in the efficiency.

5.2 Homomorphic Evaluation of Statistical and Analytic Functions

The HEAAN scheme can evaluate an arbitrary analytic function by exploiting its
polynomial approximation. Table 2 shows a parameter set and evaluation timings
for the multiplicative inverse, the exponential function, and the sigmoid function
σ(x) = (1+exp(−x))−1. We adapt the approximation method for multiplicative

14



inverse of [12, Algorithm 2] and evaluate the approximate polynomial of degree
15. For the exponential and sigmoid functions, we use the Taylor expansions
up to degree 7. The output ciphertexts have at least 32 bits of precision. These
computations can be performed over multiple slots simultaneously, yielding a
better amortized performance per slot.

Table 2: Homomorphic evaluation of analytic functions

Function Degree N log q dlogQLe
Total Amortized

time time

x−1 15 214 55 281 167ms 21µs

expx 7 214 55 281 164ms 20µs

Sigmoid 7 214 55 281 161ms 19µs

We also evaluated mean and variance functions that are the most common
quantities in statistical analysis. There have been a few attempts to evaluate
these measurements on an HE system. For example, Lauter et al. [31] took
about six seconds to obtain the square sum of 100 integers without division by
the number of elements.

For computation of mean and variance of n numbers, we encrypt all the num-
bers in a single ciphertext and compute their summation by applying the partial
sum algorithm [10, Algorithm 2]. It repeats to rotate an encrypted plaintext vec-
tor and add it to the original ciphertext. The resulting ciphertext encrypts the
mean value in every plaintext slot. The following example describes the partial
sum algorithm when n = 4.

(m1,m2,m3,m4) 7→ (m1,m2,m3,m4) + (m3,m4,m1,m2)

= (m1 +m3,m2 +m4,m1 +m3,m2 +m4)

7→

(
4∑
i=1

mi,

4∑
i=1

mi,

4∑
i=1

mi,

4∑
i=1

mi

)
Contrary to previous work, the approximate HE scheme can perform a division
by n by multiplying the constant bq/ne and rescaling by one level. In the case
of the variance function, we first square an input ciphertext and apply the same
procedure to get a ciphertext encrypting the mean square in its plaintext slots.
Then the variance of input data can be computed by subtracting the square
of the encrypted mean value. We summarize the parameter and experimental
results for homomorphic evaluation of statistical functions on n = 213 numbers
in Table 3.

5.3 Homomorphic Training of Logistic Regression Model

The security and privacy issues have arisen on machine learning because the
training of a model requires a large database consisting of sensitive informa-

15



Table 3: Homomorphic evaluation of statistic functions

Number of
N log q dlogQLe

Total

elements (n) time

Mean
213 214 55 171

307ms

Variance 518ms

tion while the prediction phase is based on private information of individuals.
The technology of an HE system is a promising solution to address these issues
by aggregating encrypted personal data and building a model without informa-
tion leakage. ML Confidential [24] and CryptoNets [23] are notable examples
of leveraging the technology of HE for secure outsourcing of machine learning
applications.

In particular, HEAAN [12, 10] is a strong candidate for machine learning tasks
since most of training and prediction algorithms contain an arithmetic over the
real numbers. For example, the iDASH competition in 20174 announced a task
which aims to build a logistic regression model from homomorphically encrypted
genomic data. To be more precise, for a given dataset consisting of n samples
(xi, yi) ∈ Rd × {±1} of d features and a binary class, the goal was to find a
weight vector β ∈ Rd+1 which minimizes the loss function

J(β) =

n∑
i=1

log(1 + exp(−βTzi))

where zi = yi · (1,xi) for 1 ≤ i ≤ n. The best solution [28] adapted the HEAAN

library [11] to evaluate Nesterov’s accelerated gradient descent method [32].
We implemented the same algorithm based on HEAAN-RNS to show its ver-

satility and efficiency. For a fair comparison, we adapt the previous encoding
and evaluation strategies: the whole database is encrypted in a single ciphertext
and the sigmoid function of the gradient descent algorithm is approximated to
its least squares approximation. Our implementation took about 1.8 minutes to
train a model based on Low Birth Weight Study (lbw) [30] and Umaru Impact
Study (uis) [33] datasets using a single core processor, compared to 3.5 min-
utes of the previous best solution [28] using four cores, while maintaining the
accuracy and area under the ROC curve (AUC) of the resulting classifier.

Acknowledgments. We would like to thank the anonymous SAC’18 review-
ers for useful comments. This work was partially supported by Institute for
Information & communications Technology Promotion(IITP) grant funded by
the Korea government(MSIT) (No.B0717-16-0098). M. Kim was supported by
the National Institute of Health (NIH) under award number U01EB023685
and R01GM118574 as well as Cancer Prevention Research Institute of Texas
(CPRIT) grant RR180012.

4 http://www.humangenomeprivacy.org/2017/

16



Table 4: Homomorphic training of logistic regression model

Dataset
Num of Num of Num of

N log q dlogQLe
Total

Accuracy AUC
features samples iterations time

lbw 9 189 5 216 40 1061 1.82min 69.73% 0.62

uis 8 575 5 216 40 1061 1.83min 74.43% 0.59

References

1. C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian, and T. Lep-
oint. NFLlib: NTT-based fast lattice library. In Cryptographers Track at the RSA
Conference, pages 341–356. Springer, 2016.

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

3. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV
like somewhat homomorphic encryption schemes. In International Conference on
Selected Areas in Cryptography, pages 423–442. Springer, 2016.

4. P. Barret. Implementing the rivest shamir and adleman public key encryption al-
gorithm on a standard digital signal processor. Advances in Cryptology - CRYPTO
1986, 1986.

5. C. Bonte, C. Bootland, J. W. Bos, W. Castryck, I. Iliashenko, and F. Vercauteren.
Faster homomorphic function evaluation using non-integral base encoding. In In-
ternational Conference on Cryptographic Hardware and Embedded Systems, pages
579–600. Springer, 2017.

6. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Advances in Cryptology–CRYPTO 2012, pages 868–886.
Springer, 2012.

7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Proc. of ITCS, pages 309–325. ACM, 2012.

8. H. Chen, K. Laine, and R. Player. Simple encrypted arithmetic library-seal v2. 1.
In International Conference on Financial Cryptography and Data Security, pages
3–18. Springer, 2017.

9. H. Chen, K. Laine, R. Player, and Y. Xia. High-precision arithmetic in homomor-
phic encryption. In Cryptographers Track at the RSA Conference, pages 116–136.
Springer, 2018.

10. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for approximate
homomorphic encryption. In Advanced in Cryptology–EUROCRYPT 2018, pages
360–384. Springer, 2018.

11. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Implementation of HEAAN, 2016.
https://github.com/kimandrik/HEAAN.

12. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arith-
metic of approximate numbers. In Advances in Cryptology–ASIACRYPT 2017,
pages 409–437. Springer, 2017.

13. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

14. A. Costache and N. P. Smart. Which ring based somewhat homomorphic en-
cryption scheme is best? In Cryptographers Track at the RSA Conference, pages
325–340. Springer, 2016.

17



15. A. Costache, N. P. Smart, and S. Vivek. Faster homomorphic evaluation of discrete
fourier transforms. In International Conference on Financial Cryptography and
Data Security, pages 517–529. Springer, 2017.

16. A. Costache, N. P. Smart, S. Vivek, and A. Waller. Fixed-point arithmetic in she
schemes. In International Conference on Selected Areas in Cryptography, pages
401–422. Springer, 2016.

17. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology–EUROCRYPT 2010, pages
24–43. Springer, 2010.

18. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–640.
Springer, 2015.

19. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

20. W. M. Gentleman and G. Sande. Fast fourier transforms: For fun and profit. pages
563–578. 1966.

21. C. Gentry. Fully homomorphic encryption using ideal lattices. In In Proc. STOC,
pages 169–178, 2009.

22. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit.
In Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

23. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning, pages 201–210,
2016.

24. T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learning on en-
crypted data. In International Conference on Information Security and Cryptology,
pages 1–21. Springer, 2012.

25. S. Halevi, Y. Polyakov, and V. Shoup. An improved RNS variant of the BFV
homomorphic encryption scheme. Cryptology ePrint Archive, Report 2018/117,
2018. https://eprint.iacr.org/2018/117.

26. S. Halevi and V. Shoup. Design and implementation of a homomorphic-encryption
library. IBM Research (Manuscript), 2013.

27. D. Harvey. Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation, 60:113–119, 2012.

28. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model
training based on the approximate homomorphic encryption. To appear in BMC
medical genomics, 2018.

29. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based
on homomorphic encryption: design and evaluation. JMIR medical informatics,
6(2), 2018.

30. lbw. Low birth weight study data. https://rdrr.io/rforge/LogisticDx/man/

lbw.html, 2017.

31. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, pages 113–124. ACM, 2011.

32. Y. Nesterov. A method of solving a convex programming problem with convergence
rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

33. uis. Umaru impact study data. https://rdrr.io/rforge/LogisticDx/man/uis.

html, 2017.

18



A Correctness and Noise Estimation

Our improved HE scheme is based on two main techniques- approximate basis
and modulus switching, and both of them induce some additional errors. In
this section, we estimate the size of errors and show that they can be managed
by choosing a proper HE parameter set. For convenience, we adapt the same
notations as in Section 4.

A.1 Approximate Modulus Switching

Fast Conversion. Our modulus switching algorithms are based on the fast
basis conversion algorithm introduced in [3]. For the RNS representation [a]C of
an integer a ∈ ZQ`

, the fast conversion algorithm ConvC→B([a]C) computes the

RNS representation of a′ =
∑`−1
j=0[a(j) · q̂−1j ]qj · q̂j with respect to the basis B.

Then there exists an integer e ∈ [−`/2, `/2] satisfying a′ = a+Q · e since a′ ≡ a
(mod Q) and |a′| ≤ (`/2) ·Q.

Approximate Modulus Raising. Let [a]C be the RNS representation of an
integer a ∈ ZQ. The approximate modulus raising algorithm ModUpC→D([a]C)
returns the concatenation of ConvC→B([a]C) and [a]C , which is the RNS repre-
sentation of a + Q · e for some integer e ∈ [−`/2, `/2] from the property of the
fast conversion algorithm.

Approximate Modulus Reduction. Let [b̃]D = (b̃(i)) for 0 ≤ i ≤ k + `− 1 be
the RNS representation of an integer b̃ ∈ ZP ·Q. It satisfies that (b̃(0), . . . , b̃(k−1)) =

[a]B for a = [b̃]P . From the property of the fast conversion algorithm, we have
that (ã(0), . . . , ã(`−1))← ConvB→C([a]B) is the RNS representation of ã := a+P ·e
for some integer e such that |ã| ≤ (k/2) · P .

Let b = P−1 · (b̃ − ã). It is an integer from b̃ ≡ a ≡ ã (mod P ). Then
the output of ModDownD→C([b̃]D) is equal to [b]C since b ≡ P−1 · (b̃ − ã) ≡(∏k−1

i=0 pi

)−1
· (b̃(k+j) − ã(j)) (mod qj). Note that the integer b ∈ ZQ satisfies

|b− P−1 · b̃| = P−1 · |ã| ≤ k/2.

A.2 Homomorphic Operations

In this paragraph, we will focus on homomorphic operations provided in our
scheme. We define ‖a‖∞ and ‖a‖1 by the relevant norms on the coefficients vector
(a0, . . . , aN−1) of a(X). Let ζ = exp(−πi/N). Recall that the canonical embed-
ding map onK = Q[X]/(Xn+1) is defined by a(X) 7→ (a(ζ), a(ζ3), . . . , a(ζ2N−1)).
Its `∞-norm is called the canonical embedding norm, and denoted by ‖a‖can∞ =
‖σ(a)‖∞. Note that ‖a‖can∞ = ‖τ(a)‖∞ for the decoding map τ and for any a ∈ K.

We specify the distributions χkey, χerr, and χenc for noise analysis of our
scheme. For an positive integer h, the secret key distribution χkey follows a
uniform distribution over the set of signed binary vectors in {0,±1}N whose
Hamming weight (the number of nonzero coefficients) is exactly h. The error

19



distribution χerr chooses a polynomial s by sampling its coefficients indepen-
dently from the discrete Gaussian distribution of variance σ2 for a real σ > 0.
The encryption key distribution χenc draws each entry in the vector from {0,±1},
with probability 1/4 for each of +1 and −1, and probability being zero 1/2.

We follow the same methodology for noise estimation as in [22, 14, 12]. As-
sume that a polynomial a(X) is sampled from one of the distributions used in
our HE scheme. Since a(ζ) is the inner product of coefficient vector of a and the
fixed vector (1, ζ, . . . , ζN−1) of Euclidean norm

√
N , the random variable a(ζ)

has variance Verr = σ2 ·N , where σ2 is the variance of each coefficient of a. Sim-
ilarly, a(ζ) a the variance of Vq = q2N/12 (resp. N/2), when a is sampled from
U(Rq) (resp. χenc). In particular, it has variance h when a(X) is chosen from
χkey. Moreover, we can assume that a(ζ) is distributed similarly to a Gaussian
random variable over complex plane since it is a sum of many independent and
identically distributed random variables. Every evaluations at root of unity ζj

share the same variance. Hence, we will use 6 ·
√
V as a high-probability bound

on the canonical embedding norm of a when each coefficient has a variance
V . For a multiplication of two independent random variables close to Gaussian
distributions with variances V1 and V2, we will use a high-probability bound
16 ·
√
V1V2.

Encryption. Our encryption algorithm does not use any approximate modulus
switching algorithms. Therefore, it has exactly the same noise with the original
implementation of HEAAN scheme. For a plaintext m ∈ R, it returns a ciphertext
ct ∈ R2

QL
which satisfies 〈ct, sk〉 ≡ m + e (mod QL) for some e ∈ R such that

‖e‖can∞ ≤ Benc = 8
√

2σN + 6σ
√
N + 16σ

√
hN from Lemma 1 of [12].

Addition. It does not induce any additional error since 〈ctadd, sk〉 ≡ 〈ct, sk〉 +
〈ct′, sk〉 (mod Q`).

Rescaling. Let ct =
(
ct(j) = (c

(j)
0 , c

(j)
1 )
)
0≤j≤`

∈
∏`
j=0R

2
qj be an input cipher-

text of level `, and ct′ ←
(
ct′(j) = (c

′(j)
0 , c

′(j)
1 )

)
0≤j≤`−1

← RS(ct) be the output

ciphertext obtained by c
′(j)
i ← q−1` · (c

(j)
i − c

(`)
i ) for i = 0, 1 and 0 ≤ j < `.

Let ci ∈ RQL
be the polynomials satisfying [ci]C` = (c

(0)
i , . . . , c

(`)
i ) for i = 0, 1.

Then we have that [ci]C`−1
= (c

′(0)
i , . . . , c

′(`−1)
i ) for c′i = q−1` · (ci − [ci]q`) =

bq−1` · cie, that is, our rescaling procedure computes the exactly same ciphertext
as in the original HEAAN scheme with RNS representation. Therefore, we have
[〈ct′, sk〉]Q`−1

= q−1` · [〈ct, sk〉]Q`
+ ers for some ers ∈ K satisfying ‖e‖can∞ ≤ Brs =√

N/3 · (3 + 8
√
h) from Lemma 2 of [12].

Multiplication. Suppose that we are given two level-` ciphertext ct and ct′. The
output of the first step in the multiplication algorithm is the RNS representation
of (d0, d1, d2) ∈ R3

Q`
such that d0+d1 ·s+d2 ·s2 ≡ 〈ct, sk〉·〈ct′, sk〉 (mod Q`). The

output of the second step is the RNS representation of d̃2 = d2+Q`·e with respect
to the basis D` for some e ∈ R satisfying ‖d̃2‖∞ ≤ 1

2 (`+ 1) ·Q`. We may assume

20



that the integral polynomial d̃2 behaves like the sum of (`+ 1) independent and
uniform random variables over RQ`

, so its variance is V = 1
2 (`+ 1) · (Q2

` ·N/12).
Since the first (k+`+1) components of the evaluation key evk can be viewed

as an encryption of P · s2 modulo P · Q`, the output c̃t of the third step is
an encryption of P · d̃2 · s2 ≡ P · d2 · s2 (mod P · Q`). Its error is bounded by

16 ·
√
V ·
√
Nσ2 = 8

√
(`+ 1)/6 ·Q` · σN =

√
(`+ 1)/2 ·Bks ·Q`.

The fourth step reduces the modulus of c̃t using the modulus reduction algo-
rithm. It returns a ciphertext ĉt ∈ R2

Q`
such that P · ĉt ≈ c̃t. The error P · ĉt− c̃t

behaves as if it is a sum of k independent and uniform random variables on RP ,
so its variance is k ·VP = k ·P 2N/12. Finally, dividing by P , we obtain the error
after modulus reduction. Therefore, ĉt is an encryption of d2 · s2 with an error
bounded by

√
(`+ 1)/2 · P−1 ·Bks ·Q` +

√
k ·Brs.

B List of Primes

A ciphertext modulus is chosen to be a product of distinct primes and each of
them satisfies the following conditions:{

|2−κ · qj − 1| < 2−η,

qj ≡ 1 (mod 2N),

for some integers κ, η, and N . In other words, qj is an approximation of 2κ with
η-bit precision, and there is a (2N)-th primitive root of unity modulo qj . All
primes are expressed using hexadecimal system to show how close they are to
powers of two.

There are 22 primes including q0 = 0x20000000000b0001 satisfying these
conditions for κ = 61, η = 37, and N = 215. We have 33 primes when (κ, η,N) =
(55, 31, 215), and 26 prime numbers when (κ, η,N) = (49, 25, 215). The following
is a list of 15 primes (among 33 primes for the second parameter) that were used
in the implementation described in Table 1.

[80000000080001, 80000000130001, 7fffffffe90001,

80000000190001, 800000001d0001, 7fffffffbf0001,

7fffffffbd0001, 80000000440001, 7fffffffba0001,

80000000490001, 80000000500001, 7fffffffaa0001,

7fffffffa50001, 800000005e0001, 7fffffff9f0001]

21


