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Abstract. Homomorphic Encryption (HE) is a cryptosystem which sup-
ports computation on encrypted data. López-Alt et al. (STOC 2012)
proposed a generalized notion of HE, called Multi-Key Homomorphic
Encryption (MKHE), which is capable of performing arithmetic opera-
tions on ciphertexts encrypted under different keys.
In this paper, we present multi-key variants of two HE schemes with
packed ciphertexts. We present new relinearization algorithms which are
simpler and faster than previous method by Chen et al. (TCC 2017). We
then generalize the bootstrapping techniques for HE to obtain multi-key
fully homomorphic encryption schemes. We provide a proof-of-concept
implementation of both MKHE schemes using Microsoft SEAL. For ex-
ample, when the dimension of base ring is 8192, homomorphic multi-
plication between multi-key BFV (resp. CKKS) ciphertexts associated
with four parties followed by a relinearization takes about 116 (resp. 67)
milliseconds.
Our MKHE schemes have a wide range of applications in secure com-
putation between multiple data providers. As a benchmark, we homo-
morphically classify an image using a pre-trained neural network model,
where input data and model are encrypted under different keys. Our im-
plementation takes about 1.8 seconds to evaluate one convolutional layer
followed by two fully connected layers on an encrypted image from the
MNIST dataset.

Keywords: multi-key homomorphic encryption; packed ciphertext; ring learn-
ing with errors; neural networks

1 Introduction

As large amount of data are being generated and used for driving novel scientific
discoveries, the effective and responsible utilization of large data remain to be a
big challenge. This issue might be alleviated by outsourcing to public cloud ser-
vice providers with intensive computing resources. However, there still remains
a problem in privacy and security of outsourcing data and analysis. In the past



few years, significant progresses have been made on cryptographic techniques
for secure computation. Among the techniques for secure computation, Multi-
Party Computation (MPC) and Homomorphic Encryption (HE) have received
increasing attention in the past few years due to technical breakthroughs.

The history of MPC dates back three decades ago [49, 5], and since then
it has been intensively studied in the theory community. In this approach, two
or more parties participate in an interactive protocol to compute a function
on their private inputs, where only the output of the function is revealed to
the parties. Recent years witnessed a large body of works on improving the
practical efficiency of MPC, and state-of-the-art protocols have achieved orders
of magnitude improvements on performance (see e.g. [48, 20, 36]). However, these
protocols are still inherently inefficient in terms of communication complexity:
the number of bits that the parties need to exchange during the protocol is
proportional to the product between the complexity of the function and the
number of parties. Therefore, the high communication complexity remains the
main bottleneck of MPC protocols.

Moreover, the aforementioned MPC protocols may not be desirable for cloud-
based applications, as all the parties involved need to perform local computation
proportional to the complexity of the function. However, in practical use-cases,
we cannot expect the data providers to either perform large amount of work or
stay online during the entire protocol execution. Another model was proposed
where the data owners secret-share their data with a small number of indepen-
dent servers, who perform an MPC to generate the computation result [23, 43].
These protocols have good performance and they moved the burden from the
data providers to the servers, but their privacy guarantees rely on the assumption
that the servers do not collude.

HE refers to a cryptosystem that allows computing on encrypted data with-
out decrypting them, thus enabling securely outsourcing computation in an un-
trusted cloud. There have been significant technical advances on HE after Gen-
try’s first construction [24]. For example, one can encrypt multiple plaintext val-
ues into a single packed ciphertext, and use the single instruction multiple data
(SIMD) techniques to perform operations on these values in parallel [47, 26].
Hence, HE schemes with packing techniques [7, 6, 22, 16] have good amortized
complexity per plaintext value, and they have been applied to privacy-preserving
big data analysis [39, 11, 37]. However, traditional HE schemes only allow com-
putation on ciphertexts decryptable under the same secret key. Therefore, HE
does not naturally support secure computation applications involving multiple
data providers, each providing its own secret key.

López-Alt et al. [42] proposed a Multi-Key Homomorphic Encryption (MKHE)
scheme, which is a cryptographic primitive supporting arithmetic operations on
ciphertexts which are not necessarily decryptable to the same secret key. In ad-
dition to solving the aforementioned issues of HE, MKHE can be also used to
design round-efficient MPC protocols with minimal communication cost [44]. In
addition, an MPC protocol from MKHE satisfies the on-the-fly MPC [42] prop-



Fig. 1. High-level overview of the application to oblivious neural network inference.

erty, where the circuit to be evaluated can be dynamically decided after the data
providers upload their encrypted data.

Despite its versatility, MKHE has been seldom used in practice. Early stud-
ies [19, 44, 45] used a multi-key variant of the GSW scheme [28]. These con-
structions have large ciphertexts and their performance does not scale well with
the number of parties. Previous work [8, 9] proposed MKHE schemes with short
ciphertexts, with the caveat that one ciphertext encrypts only a single bit. The
only existing MKHE scheme with packed ciphertexts [13, 50] is a multi-key
variant of the BGV scheme [7]. Note that all the above studies were purely ab-
stract with no implementation given, and it remains an open problem whether
an MKHE scheme supporting SIMD operations can be practical.

1.1 Our Contributions

We design multi-key variants of the BFV [6, 22] and CKKS [16] schemes. We
propose a new method for generating a relinearization key which is simpler and
faster compared to previous technique in [13]. Furthermore, we adapt the state-
of-the-art bootstrapping algorithms for these schemes [12, 14, 9] to the multi-
key scenario to build Multi-Key Fully Homomorphic Encryptions with packed
ciphertexts. Finally, we give a proof-of-concept implementation of our multi-key
schemes using Microsoft SEAL [46] and present experimental results. To the best
of our knowledge, this is the first practical implementation of MKHE schemes
that support packed ciphertexts.

We also present the first viable application of MKHE that securely evaluates
a pre-trained convolutional neural network (CNN) model. We build an efficient
protocol where a cloud server provides on-line prediction service to a data owner
using a classifier from a model provider, while protecting the privacy of both data
and model using MKHE. Our scheme with support for the multi-key operations
makes it possible to achieve this at a low end-to-end latency, and near-optimal
cost for the data and model providers, as shown in Fig. 1. The server can store
numerous ciphertexts encrypted under different keys, but the computational cost
of a certain task depends only on the number of parties related to the circuit.



1.2 Overview of Our Construction

Let R = Z[X]/(Xn+1) be the cyclotomic ring with a power-of-two dimension n,
and si ∈ R be the secret of the i-th party. The starting point of the construction
of a a ring-based MKHE scheme is the requirement that the resulting scheme
should be able to handle homomorphic computations on ciphertexts under inde-
pendently generated secret keys. A ciphertext of our MKHE scheme associated
to k different parties is of the form ct = (c0, c1, . . . , ck) ∈ Rk+1

q for a modulus

q, which is decryptable by the concatenated secret sk = (1, s1, . . . , sk). In other
words, its phase µ = 〈ct, sk〉 (mod q) is a randomized encoding of a plaintext
message m corresponding to the base scheme.

Homomorphic multiplication of BFV or CKKS consists of two steps: tensor
product and relinearization. The tensor product of two input ciphertexts satisfies
〈ct1 ⊗ ct2, sk ⊗ sk〉 = 〈ct1, sk〉 · 〈ct2, sk〉, so it is a valid encryption under the
tensor squared secret sk ⊗ sk. In the relinearization step, we aim to transform

the extended ciphertext ct = ct1 ⊗ ct2 ∈ R
(k+1)2

q into a canonical ciphertext
encrypting the same message under sk. This step can be understood as a key-
switching process which requires a special encryption of sk ⊗ sk. We note that
sk⊗sk contains entries sisj which depend on secrets of two distinct parties. Hence
a relinearization key corresponding to non-linear entries cannot be generated by
a single party, different from the traditional HE schemes.

We propose an RLWE-based cryptosystem to achieve this functionality. It
looks similar to the ring variant of GSW [28, 21] but our scheme supports some
operations between ciphertexts under different keys. Let g ∈ Zd be an integral
vector, called the gadget vector. This scheme assumes the Common Reference
String (CRS) model so all parties share a random polynomial vector a ∈ Rdq .
Each party i generates a special encryption of secret si by itself, which is a
matrix Di = [di,0|di,1|di,2] ∈ Rd×3q satisfying di,0 + si ·di,1 ≈ ri ·g (mod q) and
di,2 ≈ ri · a + si · g (mod q) where ri is a small polynomial sampled from the
key distribution. It is published as the evaluation key of the i-th party.

We present two relinearization methods with different advantages. For each
pair 1 ≤ i, j ≤ k, the first method combines the i-th evaluation key Di with
the j-th public key bj ≈ −sj · a (mod q) to generate Ki,j ∈ Rd×3q such that
Ki,j · (1, si, sj) ≈ sisj · g (mod q). That is, Ki,j can be used to relinearize
one entry ci,j of an extended ciphertext into a triple (c′0, c

′
i, c
′
j) such that c′0 +

c′is
′
i + c′jsj ≈ ci,jsisj (mod q). This method can be viewed as a variant of the

previous GSW ciphertext extension proposed in [44]. In particular, each row of
Ki,j consists of three polynomials in Rq (compared to O(k) dimension of previous
work [13, 50]), so that the bit size of a shared relinearization key {Ki,j}1≤i,j≤k
is O(dk2 · n log q) and the complexity of key generation is O(d2k2) polynomial
operations modulo q (see Section 3 for details). The relinearization algorithm
repeats O(k2) key-switching operations from sisj to (1, si, sj), so its complexity
is O(dk2) operations in Rq. We note that Ki,j can be pre-computed before multi-
key operations, and a generated key can be reused for any computation related
to the parties i and j.



Our second approach directly linearizes each of the entries of an extended
ciphertext by multiplying the j-th public key bj and i-th evaluation key Di in a
recursive way. The first solution should generate and store a shared relineariza-
tion key {Ki,j}1≤i≤k, so its space and time complexity grow quadratically on k.
However, the second algorithm allows us to keep only the individual evaluation
keys which is linear on k. Furthermore, it significantly reduces the variance of
additional noise from relinearization, so that we can use a smaller parameter
while keeping the same functionality. The only disadvantage is that, if we ex-
clude the complexity of a shared key generation from the first approach, then
the second algorithm entails additional costs (about 1/3 of the complexity of
the first relinearization). However, it is ignorable compared to the overall perfor-
mance gain from its various advantages. Finally, we adapt the modulus raising
technique [27] to the second approach to reduce the noise growth even more.

As an orthogonal issue, the bootstrapping of packed MKHE schemes has not
been studied in the literature. We generalize the existing bootstrapping methods
for HE schemes [25, 32, 12, 14, 9] to the multi-key setting. The main issue
of generalization is that the pipeline of bootstrapping includes some advanced
functionalities such as slot permutation. We resolve this issue and provide all
necessary operations by applying the multi-key-switching technique in [10] to
Galois automorphism.

Finally, we apply the state-of-art optimization techniques for implementing
HE schemes [4, 30, 15] to our MKHE schemes for performance improvement. For
example, we implement full Residue Number System (RNS) variants of MKHE
schemes and use an RNS-friendly decomposition method [4, 30, 15] for relin-
earization, thereby avoiding expensive high-precision arithmetic.

1.3 Related Works

López-Alt et al. [42] firstly proposed an MKHE scheme based on NTRU. After
that, Clear and McGoldrick [19] suggested a multi-key variant of GSW together
with ciphertext extension technique to design an MKHE scheme and it was
simplified by Mukherjee and Wichs [44]. Peikert and Shiehian [45] developed two
multi-hop MKHE schemes based on the same multi-key GSW scheme. However,
these schemes could encrypt only a single bit in a huge extended GSW ciphertext.

Brakerski and Perlman [8] suggested an MKHE scheme with short ciphertexts
whose length grow linearly on the number of parties involved. Chen, Chillotti and
Song [10] improved its efficiency by applying the framework of TFHE [17] with
the first implementation of MKHE primitive. However, their scheme does not
support the packing technique, thereby having similar inherent (dis)advantages
from TFHE.

Chen, Zhang and Wang [13] described a multi-key variant of BGV [7] by
adapting the multi-key GSW scheme for generating a relinearization key. Their
performance was improved by Zhou et al. [50], however, each key-switching key
from si ·sj to the ordinary key has O(k) components. In addition, these works did
not provide any implementation or empirical result. This study is an extension of
these works in the sense that our relinearization method and other optimization



techniques can be applied to BGV as well. We also stress that the performance
of previous batch MKHE schemes can be improved by observing the sparsity of
evaluation keys, but this point was not pointed out in the manuscripts.

2 Background

2.1 Notation

All logarithms are in base two unless otherwise indicated. We denote vectors
in bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote by 〈u,v〉
the usual dot product of two vectors u,v. For a real number r, bre denotes the
nearest integer to r, rounding upwards in case of a tie. We use x← D to denote
the sampling x according to distribution D. For a finite set S, U(S) denotes the
uniform distribution on S. We let λ denote the security parameter throughout
the paper: all known valid attacks against the cryptographic scheme under scope
should take Ω(2λ) bit operations.

2.2 Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption is a cryptosystem which allows us to eval-
uate an arithmetic circuit on ciphertexts, possibly encrypted under different
keys.

Let M be the message space with arithmetic structure. An MKHE scheme
MKHE consists of five PPT algorithms (Setup, KeyGen, Enc, Dec, Eval). We as-
sume that each participating party has a reference (index) to its public and secret
keys. A multi-key ciphertext implicitly contains an ordered set T = {id1, . . . , idk}
of associated references. For example, a fresh ciphertext ct← MKHE.Enc(µ; pkid)
corresponds to a single-element set T = {id} but the size of reference set gets
larger as the computation between ciphertexts from different parties progresses.

• Setup: pp ← MKHE.Setup(1λ). Takes the security parameter as an input and
returns the public parameterization. We assume that all the other algorithms
implicitly take pp as an input .

• Key Generation: (sk, pk) ← MKHE.KeyGen(pp). Outputs a pair of secret and
public keys.

• Encryption: ct← MKHE.Enc(µ; pk). Encrypts a plaintext µ ∈M and outputs
a ciphertext ct ∈ {0, 1}∗.

• Decryption: µ ← MKHE.Dec(ct; {skid}id∈T ). Given a ciphertext ct with the
corresponding sequence of secret keys, outputs a plaintext µ.

• Homomorphic evaluation:

ct← MKHE.Eval(C, (ct1, . . . , ct`), {pkid}id∈T ).

Given a circuit C, a tuple of multi-key ciphertexts (ct1, . . . , ct`) and the corre-
sponding set of public keys {pkid}id∈T , outputs a ciphertext ct. Its reference set



is the union T = T1 ∪ · · · ∪T` of reference sets Tj of the input ciphertexts ctj for
1 ≤ j ≤ `.
Semantic Security. For any two messages µ0, µ1 ∈M, the distributions {MKHE.Enc(µi; pk)}
for i = 0, 1 should be computationally indistinguishable where pp← MKHE.Setup(1λ)
and (sk, pk)← MKHE.KeyGen(pp).

Correctness and Compactness. An MKHE scheme is compact if the size of
a ciphertext relevant to k parties is bounded by poly(λ, k) for a fixed polynomial
poly(·, ·).

For 1 ≤ j ≤ `, let ctj be a ciphertext (with reference set Tj) such that
MKHE.Dec(ctj , {skid}id∈Tj

) = µj . Let C : M` → M be a circuit and ct ←
MKHE.Eval(C, (ct1, . . . , ct`), {pkid}id∈T ) for T = T1 ∪ · · · ∪ T`. Then,

MKHE.Dec(ct, {skid}id∈T ) = C(µ1, . . . , µ`) (1)

with an overwhelming probability. The equality of (1) can be substituted by ap-
proximate equality similar to the CKKS scheme for approximate arithmetic [16].

2.3 Ring Learning with Errors

Throughout the paper, we assume that n is a power-of-two integer and R =
Z[X]/(Xn + 1). We write Rq = R/(q · R) for the residue ring of R modulo
an integer q. The Ring Learning with Errors (RLWE) assumption is that given
any polynomial number of samples (ai, bi = ai · s + ei) ∈ R2

q , where ai, s are
uniformly random in Rq and ei is drawn from an error distribution, the bi’s are
computationally indistinguishable from uniformly random elements from Rq. In
our implementation, we sample the secret s uniformly at random from the set
of binary polynomials.

2.4 Gadget Decomposition

Let g = (gi) ∈ Zd be a gadget vector and q an integer. The gadget decomposition,
denoted by g−1, is a function from Rq to Rd which transforms an element a ∈ Rq
into a vector u = (u0, . . . , ud−1) ∈ Rd of small polynomials such that a =∑d−1
i=0 gi · ui (mod q).
The gadget decomposition technique is widely used in the construction of HE

schemes. For example, homomorphic evaluation of a nonlinear circuit is based
on the key-switching technique and most of HE schemes exploit various gadget
decomposition method to control the noise growth. There have been suggested
in the literature various decomposition methods such as bit decomposition [6, 7],
base decomposition [21, 17] and RNS-based decomposition [4, 30]. Our imple-
mentation exploits an RNS-friendly decomposition for the efficiency.

3 Renearizing Multi-key Ciphertexts

This section provides a high-level description of our MKHE schemes and ex-
plain how to perform the relinearization procedures which are core operations
in homomorphic arithmetic.



3.1 Overview of HEs with Packed Ciphertexts

In recent years, there have been remarkable advances in the performance of HE
schemes. For example, the ciphertext packing technique allows us to encrypt
multiple data in a single ciphertext and perform parallel homomorphic opera-
tions in a SIMD manner. Currently the batch HE schemes such as BGV [7],
BFV [6, 22] and CKKS [16] are the best-performing schemes in terms of amor-
tized size and timing per plaintext slot. They adapt some DFT-like algorithms
to transform a vector of plaintext values into an element of cyclotomic ring.

Let sk = (1, s) for the secret s ∈ R. A canonical RLWE-based ciphertext is
of the form ct = (c0, c1) ∈ R2

q such that the inner product µ = 〈ct, sk〉 (mod q),
called the phase, is a randomized encoding of a plaintext m. For example, the
phase of a BFV ciphertext has the form of µ = (q/t) ·m + e for the plaintext
modulus t while the phase µ = m + e of CKKS is an approximate value of the
plaintext.

For homomorphic computation, we basically perform arithmetic operations
between the phases of given ciphertexts. In particular, homomorphic multi-
plication of RLWE ciphertexts consists of two steps: tensor product and re-
linearization. For input ciphertexts ct1 and ct2, we first compute their ten-
sor product and return the extended ciphertext ct = ct1 ⊗ ct2 that satisfies
〈ct, sk ⊗ sk〉 = 〈ct1, sk〉 · 〈ct2, sk〉. Since sk ⊗ sk contains the nonlinear entry
s2, it requires to perform the relinearization procedure which transforms the
extended ciphertext to a canonical ciphertext encrypting the same message.
Roughly speaking, we publish a relinerization key which is some kind of ci-
phertext encrypting s2 under sk and run the key-switching algorithm for this
conversion.

In the multi-key case, a ciphertext related to k different parties is of the form
ct = (c0, c1, . . . , ck) ∈ Rk+1

q which is decryptable by the concatenated secret

sk = (1, s1, . . . , sk), i.e., its phase is computed by µ = 〈ct, sk〉 = c0 +
∑k
i=1 ci · si.

If we follow the same pipeline for homomorphic operation as in the single-key
setting, the tensor product step returns an extended ciphertext corresponding
sk⊗sk. Hence, we need to generate a relinearization key which consists of multiple
ciphertexts encrypting the entries si ·sj of sk⊗sk. Different from the classical HE
schemes, it requires some additional computations since the term si · sj depends
on two secret keys which are independently generated by different parties. In
the following, we will explain how to efficiently generate a relinearization key for
multi-key homomorphic multiplication.

3.2 Basic Scheme

In this section, we present a ring-based scheme which will be used to generate
some public material for relinearization.

• Setup(1λ): For a given security parameter λ, set the RLWE dimension n, ci-
phertext modulus q, key distribution χ and error distribution ψ over R. Generate
a random vector a← U(Rdq). Return the public parameter pp = (n, q, χ, ψ,a).



• KeyGen(pp): Sample the secret key s← χ. Sample an error vector e← ψd and

set the public key as b = −s · a + e (mod q) in Rdq .

• UniEnc(µ; s): For an input plaintext µ ∈ R, generate a ciphertext D =

[d0|d1|d2] ∈ Rd×3q as follows:

1. Sample r ← χ.
2. Sample d1 ← U(Rdq) and e1 ← ψd, and set d0 = −s ·d1 +e1 + r ·g (mod q).

3. Sample e2 ← ψd and set d2 = r · a + e2 + µ · g (mod q).

The public parameter pp contains a randomly generated vector a ∈ Rdq , so
we are assuming the common reference string model. All parties should take the
same public parameter as an input of the key-generation algorithm to support
multi-key homomorphic arithmetic. We note that the same assumption was made
in all the previous researches on MKHE.

The uni-encryption algorithm is a symmetric encryption which can encrypt a
single ring element. An uni-encrypted ciphertext D = [d0|d1|d2]← UniEnc(µ; s)
consists of three vectors in Rdq so is (3/4) times as large as an ordinary RGSW

ciphertext in R2d×2
q . For an uni-encrypted ciphertext D, the first two columns

[d0|d1] can be viewed as an encryption of r under the secret s while [d2| − a]
forms an encryption of µ under secret r.

Security. We claim that the uni-encryption scheme is IND-CPA secure under
the RLWE assumption. We will show that the distribution

{(a,b,D) : pp = (n, χ, ψ,a)← Setup(1λ), (s,b)← KeyGen(pp),D← UniEnc(µ; s)}

is computationally indistinguishable from the uniform distribution over Rdq ×
Rdq ×Rd×3q for an arbitrary µ ∈ R.

First, we can modify b and d0 so that we sample them independently from
the uniform distribution over Rdq . This step relies on the hardness of RLWE
with parameter (n, χ, ψ) and secret s. Second, d2 can also be changed into the
uniform distribution under the same RLWE assumption with secret r. Since the
uniform distribution over Rdq ×Rdq ×Rd×3q is independent from the plaintext µ,
the uni-encryption scheme is semantically secure.

3.3 Relinearization

We revisit the relinearization procedure on extended ciphertexts and present two
solutions with different advantages. We recall that the tensor product ct = ct1⊗
ct2 of two multi-key ciphertexts cti ∈ Rk+1

q encrypted under the concatenated

secret sk = (1, s1, . . . , sk) can be viewed as a ciphertext corresponding to the
tensor squared secret sk⊗ sk. Note that sk⊗ sk contains some nonlinear entries
si · sj related to two different parties. Therefore, the computing server should

be able to transform the extended ciphertext ct ∈ R(k+1)×(k+1)
q into a canonical

ciphertext by linearization of the non-linear entries si · sj .



Our relinearization methods require the same public material (evaluation
key) that is generated by individual parties as follows:

• EvkGen(s): For a secret s ∈ R, set the evaluation key D← UniEnc(s; s).

To be precise, each party i generates its own secret, public, and evaluation
keys by running the algorithms (si,bi) ← KeyGen(pp) and Di ← EvkGen(si),
then publishes the pair (bi,Di). In the rest of this section, we present two
relinearization algorithms and explain their pros and cons.

We make an additional circular security assumption since the evaluation key
is an uni-encryption of secret s encrypted by itself. However, we stress that our
assumption is no stronger than the same assumption in HE schemes [27, 22, 17,
16] requiring either bootstrapping or relinearization of ciphertexts.

First Method This solution includes a pre-processing step which generates a
shared relinearization key corresponding to the set of involved parties. A shared
relinearization key consists of encryptions of si ·sj for all pairs 1 ≤ i, j ≤ k. Then,
we can linearize an extended ciphertext by applying a standard key-switching
technique.

This approach is similar to a method proposed in previous researches [13, 50]
which also generates a shared evaluation key. However, each element of our
shared relinearization key is computed from the public information of at most
two parties so consists of three vectors, while previous method based on the
multi-key GSW scheme has O(k) dimensional entries.

• Convert(Di,bj): It takes as the input a pair of an uni-encryption Di =

[di,0|di,1|di,2] ∈ Rd×3q and a public key bj ∈ Rdq generated by (possibly dif-

ferent) parties i and j. Let ki,j,0 and ki,j,1 be the vectors in Rdq such that
ki,j,0[`] = 〈g−1(bj [`]),di,0〉 and ki,j,1[`] = 〈g−1(bj [`]),di,1〉 for 1 ≤ ` ≤ d,
i.e., [ki,j,0|ki,j,1] = Mj · [di,0|di,1] where Mj ∈ Rd×d is the matrix whose `-
th row is g−1(bj [`]) ∈ Rd. Let ki,j,2 = di,2 and return the ciphertext Ki,j =
[ki,j,0|ki,j,1|ki,j,2] ∈ Rd×3q .

ki,j,0 ki,j,1
 =


g−1(bj [1])

...

g−1(bj [d])

 ·
di,0 di,1

 ,
ki,j,2

 =

di,2
 .

• Relin(ct; {(Di,bi)}1≤i≤k): Given an extended ciphertext ct = (ci,j)0≤i,j≤k
and k pairs of evaluation/public keys {(Di,bi)}1≤i≤k, generate a ciphertext
ct
′ ∈ Rk+1

q as follows:

1. Compute Ki,j ← Convert(Di,bj) for all 1 ≤ i, j ≤ k and set the relineariza-

tion key as rlk = {Ki,j}1≤i,j≤k ∈ (Rd×3q )k
2

.
2. Run Alg. 1 to relinearize ct.



Algorithm 1 Relinearization method 1

Input: ct = (ci,j)0≤i,j≤k, rlk = {Ki,j}1≤i,j≤k.
Output: ct

′
= (c′i)0≤i≤k ∈ Rk+1

q .
1: c′0 ← c0,0
2: for 1 ≤ i ≤ k do
3: c′i ← c0,i + ci,0 (mod q)
4: end for
5: for 1 ≤ i, j ≤ k do
6: (c′0, c

′
i, c
′
j)← (c′0, c

′
i, c
′
j) + g−1(ci,j) ·Ki,j (mod q)

7: end for

We note that the first step (generation of rlk) can be pre-computed on public
information {(Di,bi)}1≤i≤k without taking a ciphertext as the input.

Correctness. We first claim that, if Di is an uni-encryption of µi ∈ R encrypted
by the i-th party and bj is the public key of the j-th party, then the output
Ki,j ← Convert(Di,bj) of the conversion algorithm is an encryption of µisj
with respect to the secret (1, si, sj), i.e., ki,j,0 + si · ki,j,1 + sj · ki,j,2 ≈ µisj · g
(mod q). It is derived from the following formulas:

ki,j,0 + si · ki,j,1 = Mj · (d0 + si · d1) ≈Mj · rig = ribj (mod q),

sj · ki,j,2 = sj · d2 ≈ risj · a + µsj · g ≈ −r · bj + µisj · g (mod q).

Note that Mj , sj and ri should be small to hold the approximate equalities. We
estimate the size of noise in Appendix B.

We now show the correctness of our algorithm. Since the evaluation key Di

of the i-th party is an uni-encryption of µi = si, we obtain that Ki,j ·(1, si, sj) ≈
sisj · g (mod q). From the definition of ct

′
, we get

〈ct′, sk〉 = c′0 +

k∑
i=1

c′i · si

= c0,0 +

k∑
i=1

(c0,i + ci,0)si +

k∑
i,j=1

g−1(ci,j) ·Ki,j · (1, si, sj) (mod q)

≈ c0,0 +

k∑
i=1

(c0,i + ci,0)si +

k∑
i,j=1

ci,j · sisj = 〈ct, sk⊗ sk〉 (mod q),

as desired.

Second Method Our second solution does not generate a shared relineariza-
tion key different from the previous one. Instead, it directly linearizes each entry
ci,j of an extended ciphertext ct = (ci,j)0≤i,j≤k by multiplying it to bj and Di

in a recursive way.



Algorithm 2 Relinearization method 2

Input: ct = (ci,j)0≤i,j≤k, {(Di = [di,0|di,1|di,2],bi)}1≤i≤k.

Output: ct
′

= (c′i)0≤i≤k ∈ Rk+1
q .

1: c′0 ← c0,0
2: for 1 ≤ i ≤ k do
3: c′i ← c0,i + ci,0 (mod q)
4: end for
5: for 1 ≤ i, j ≤ k do
6: c′i,j ← 〈g−1(ci,j),bj〉 (mod q)

7: (c′0, c
′
i)← (c′0, c

′
i) + g−1(c′i,j) · [di,0|di,1] (mod q)

8: c′j ← c′j + 〈g−1(ci,j),di,2〉 (mod q)
9: end for

• Relin(ct; {(Di,bi)}1≤i≤k): For given extended ciphertext ct = (ci,j)0≤i,j≤k
and k pairs of evaluation/public keys {(Di,bi)}1≤i≤k, generate a ciphertext
ct
′ ∈ Rk+1

q as described in Alg. 2.

We will analyze and compare two relinearization methods in the following
section. In short, the second method has advantages in storage and noise growth
while the first method could be faster if a shared evaluation key is used repeatedly
to relinearize multiple ciphertexts corresponding to the same set of parties. We
first show the correctness of the second method.

Correctness. At each iteration of the second for-loop in Alg. 2, we compute
c′i,j = 〈g−1(ci,j),bj〉, then add g−1(c′i,j)·[di,0|di,1] and 〈g−1(ci,j),di,2〉 to (c′0, c

′
i)

and c′j , respectively. We note that

g−1(c′i,j) · [di,0|di,1] · (1, si) ≈ ri · c′i,j (mod q), and

〈g−1(ci,j),di,2〉 · sj ≈ 〈g−1(ci,j),−ri · bj + sisj · g〉 = −ri · c′i,j + ci,j · sisj (mod q).

From the definition of ct
′
, we get

〈ct′, sk〉 = c′0 +

k∑
i=1

c′i · si

= c0,0 +

k∑
i=1

(c0,i + ci,0)si +

k∑
i,j=1

g−1(c′i,j) · [di,0|di,1] · (1, si)

+

k∑
i,j=1

〈g−1(ci,j),di,2〉 · sj (mod q)

≈ c0,0 +

k∑
i=1

(c0,i + ci,0)si +

k∑
i,j=1

ci,j · sisj = 〈ct, sk⊗ sk〉 (mod q),

as desired.



Performance of Relinearization Algorithms Suppose that there are k dif-
ferent parties involved in a multi-key computation. For relinearizing an extended

ciphertext ct = (ci,j)0≤i,j≤k ∈ R(k+1)2

q , both of our relinearization methods re-
peat some computations on each ci,j to switch its corresponding secret si · sj
into (1, si, sj). So we will focus on a single step (i, j) of each solution to compare
their performance.

In our first method, a computing party generates a shared relinearization
key Ki,j and uses it to linearize an input extended ciphertext. The generation of
Ki,j includes a multiplication between d×d and d×2 matrices so its complexity
is 2d2 polynomial multiplications. However, the computation of g−1(ci,j) ·Ki,j

in Step 6 of Alg. 1 requires only 3d polynomial multiplications. Meanwhile, the
second method does not have any pre-processing but a single iteration of Alg. 2
requires 4d polynomial multiplications. As a result, the first method can be up to
(4/3) times faster when one performs multiple homomorphic arithmetic on the
same set (or its subset) of parties using a pre-computed shared relinearization
key, however, the required storage grows quadratically on k compared to the
linear memory of the second method.

The second method also has an advantage in noise management, which we
will discuss below together with modulus raising technique.

Special Modulus Technique Noise growth is the main factor determining the
parameter size and thereby overall performance of a cryptosystem. In general, we
can use a large decomposition degree d to reduce the size of a decomposed vector
g−1(·) as well as key-switching error, but this naive method causes performance
degradation. In addition, the benefit of this trade-off between noise growth and
computational complexity gets smaller and smaller as d increases. Therefore,
this method is not the best option when we should have a small noise.

The special modulus (a.k.a. modulus raising) technique proposed in [27] is
one attractive solution to address this noise problem with a smaller overhead.
Roughly speaking, it raises the ciphertext modulus from q to pq for an integer p
called special modulus, and then computes the key-switching procedure over Rpq
followed by modulus reduction back to q. The main advantage of this method is
that a key-switching error is decreased by a factor of about p due to the mod-
ulus reduction. We apply this technique to our relinearization and encryption
algorithms. In particular, a special modulus variant of relinearization requires
two sequential modulus switching operations (see Appendix A for details).

We recall that for an extended ciphertext ct ∈ R(k+1)2

q , the goal of relineariza-
tion is to generate a ciphertext ct

′ ∈ Rk+1
q such that 〈ct′, sk〉 = 〈ct, sk⊗ sk〉+elin

for some error elin, which should be minimized for efficiency. We refer the reader
to Appendix B which provides a noise analysis based on the variance of polyno-
mial coefficients, but we present a concise summary in this section.

Let u be a uniform random variable over Rq. We consider its decomposition
g−1(u) and denote by Vg the average of variances of its coefficients. We respec-
tively estimate the variance of a relinearization error from our first and second



methods:

V1 ≈ k2n2σ2 · d2V 2
g , V2 ≈ k2n2σ2 · dVg.

In addition, the special modulus variant of the second method achieves a smaller
noise whose variance is

V ′2 = p−2 · V2 +
1

24
(k2 + k)n.

Compared to the first method, our second solution has significant advantages
in practice because we may use an efficient decomposition method with a small d
while obtaining the same level of noise growth. Furthermore, its modulus raising
variant obtains an even smaller error variance which is not nearly affected by
the size of decomposition since V ′2 is dominated by the second term (rounding
error) when we introduce a special modulus p which can cancel out the term V2.

4 Two MKHE Schemes with Packed Ciphertexts

In this section, we present multi-key variants of the BFV [6, 22] and CKKS [16]
schemes. They share the following setup and key generation phases but have
different algorithms for message encoding and homomorphic operations.

• MKHE.Setup(1λ): Run Setup(1λ) and return the parameter pp.

• MKHE.KeyGen(pp): Each party i generates secret, public and evaluation keys by
(si,bi)← KeyGen(pp) and Di ← EvkGen(si), respectively.

Encryption, decryption and homomorphic arithmetic of our MKHE schemes
are described in the next subsections. We have a common pre-processing when
performing a homomorphic operation between ciphertexts. For given ciphertexts
cti ∈ Rki+1

q , we denote k ≥ max{k1, k2} the number of parties involved in either
ct1 or ct2. We rearrange the entries of cti and pad zeros in the empty entries
to generate some ciphertexts ct

∗
i sharing the same secret sk = (1, s1, . . . , sk).

To be precise, a ciphertext cti = (c0, c1, . . . , cki) corresponding to the tuple of
parties (id1, . . . , idki) ∈ {1, 2, . . . , k}ki is converted into the ciphertext ct

∗
i =

(c∗0, c
∗
1, . . . , c

∗
k) ∈ Rk+1

q which is defined as c∗0 = c0 and

c∗i =

{
cj if i = idj for some 1 ≤ j ≤ ki;
0 otherwise,

for 1 ≤ i ≤ k. We remark that

〈cti, (1, sid1 , . . . , sidki
)〉 = 〈ct∗, (1, s1, . . . , sk)〉.

For simplicity, we will assume that this pre-processing is always done before
homomorphic arithmetic so that two input ciphertexts are related to the same
set of k parties.



Security and Correctness. Our MKHE schemes inherit the semantic security
of underlying HE schemes because they have exactly the same encryption algo-
rithms as the ordinary HE schemes. BFV and CKKS both randomize the public
key to generate a randomized RLWE sample and add an encoded plaintext to
the first component. Hence our MKHE schemes are IND-CPA secure under the
RLWE assumption of parameter (n, q, χ, ψ). We will briefly show the correctness
of our schemes in the following sections but we refer the reader to Appendix B
for the rigorous proof with noise estimation.

4.1 Multi-Key BFV

The BFV scheme [6, 22] is a scale-invariant HE which supports exact computa-
tion on a discrete space with a finite characteristic. We denote by t the plaintext
modulus and ∆ = bq/te be the scaling factor of the BFV scheme. The native
plaintext space is the set of cyclotomic polynomials Rt, but a plaintext is decoded
to a tuple of finite field elements via a ring isomorphism from Rt depending on
the relation of t and n [47].

• MK-BFV.Enc(m;b,a): This is the standard BFV encryption which takes a poly-
nomial m ∈ Rt as the input. Let a = a[0] and b = b[0]. Sample v ← χ and
e0, e1 ← ψ. Return the ciphertext ct = (c0, c1) ∈ R2

q where c0 = v · b+∆ ·m+ e0
(mod q) and c1 = v · a+ e1 (mod q).

• MK-BFV.Dec(ct; s1, . . . , sk): Let ct = (c0, c1, . . . , ck) ∈ Rk+1
q be a ciphertext

associated to k parties and s1, . . . , sk be their secret keys. Set sk = (1, s1, . . . , sk)
and compute

⌊
(t/q) · 〈ct, sk〉

⌉
(mod t).

• MK-BFV.Add(ct1, ct2): Given two ciphertexts cti ∈ Rk+1
q , return the ciphertext

ct
′

= ct1 + ct2 (mod q).

• MK-BFV.Mult(ct1, ct2; {(Di,bi)}1≤i≤k): Given two ciphertexts cti ∈ Rk+1
q , com-

pute ct = b(t/q) · (ct1 ⊗ ct2)e (mod q) ∈ R
(k+1)2

q and return the ciphertext
ct
′ ← Relin(ct; {(Di,bi)}1≤i≤k).

The correctness of our scheme is obtained from the properties of the basic
BFV and relinearization algorithm. A multi-key BFV encryption of m ∈ Rt
is a vector ct = (c0, c1, . . . , ck) ∈ Rk+1

q such that 〈ct, sk〉 ≈ ∆ · m (mod q)

for the secret sk = (1, s1, . . . , sk). So the decryption algorithm can recover m
correctly. If ct1 and ct2 are encryptions of m1 and m2 with respect to the secret
sk = (1, s1, . . . , sk), then their (scaled) tensor product ct = b(t/q) · (ct1 ⊗ ct2)e
(mod q) satisfies 〈ct, sk⊗ sk〉 ≈ ∆ ·m1m2 (mod q) similar to the ordinary BFV
scheme. The output ct

′ ← Relin(ct; rlk) holds 〈ct′, sk〉 ≈ 〈ct, sk⊗ sk〉 ≈ ∆ ·m1m2

(mod q).

4.2 Multi-Key CKKS

The CKKS scheme [16] is a leveled HE scheme with support for approximate

fixed-point arithmetic. We assume q =
∏L
i=0 pi for some integers pi to have a



chain of ciphertext moduli q0 < q1 < · · · < qL for q` =
∏`
i=0 pi. The native

plaintext is a small polynomial m ∈ R, but one can pack at most (n/2) complex
numbers in a single polynomial via DFT. In addition to the basic arithmetic
operations, it supports the rescaling algorithm to control the magnitude of en-
crypted message. For homomorphic operations between ciphertexts at different
levels, it requires to transform a high-level ciphertext to have the same level as
the other.

• MK-CKKS.Enc(m;b,a): Let m ∈ R be an input plaintext and let a = a[0] and

b = b[0]. Sample v ← χ and e0, e1 ← ψ. Return the ciphertext ct = (c0, c1) ∈ R2
q

where c0 = v · b+m+ e0 (mod q) and c1 = v · a+ e1 (mod q).

• MK-CKKS.Dec(ct; s1, . . . , sk): Let ct = (c0, c1, . . . , ck) ∈ Rk+1
q`

be a ciphertext

at level ` associated to k parties and s1, . . . , sk be their secret keys. Set sk =
(1, s1, . . . , sk) and return 〈ct, sk〉 (mod q`).

• MK-CKKS.Add(ct1, ct2): Given two ciphertexts cti ∈ Rk+1
q`

at level `, return the

ciphertext ct
′

= ct1 + ct2 (mod q`).

• MK-CKKS.Mult(ct1, ct2; {(Di,bi)}1≤i≤k): Given two ciphertexts cti ∈ Rk+1
q`

at

level `, compute ct = ct1 ⊗ ct2 (mod q`) ∈ R
(k+1)2

q` and return the ciphertext
ct
′ ← Relin(ct; {(Di,bi)}1≤i≤k) ∈ Rk+1

q`
. The relinearization algorithm is de-

fined over modulus q = qL, but we compute the same algorithm modulo q` for
level-` ciphertexts.

• MK-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
q`

at

level `, compute c′i =
⌊
p−1` · ci

⌉
for 0 ≤ i ≤ k and return the ciphertext

ct
′

= (c′0, c
′
1, . . . , c

′
k) ∈ Rk+1

q`−1
.

A level-` multi-key encryption of a plaintext m with respect to the secret
sk = (1, s1, . . . , sk) is a vector ct = (c0, c1, . . . , ck) ∈ Rk+1

q`
satisfying 〈ct, sk〉 ≈ m

(mod q`). For basic homomorphic operation, we take as input level-` encryptions
of m1 and m2. Then, homomorphic addition (resp. multiplication) returns a
ciphertext ct

′
such that [〈ct′, sk〉]q` is approximately equal to m1 + m2 (resp.

m1m2). Finally, we show that for a level-` encryption ct of m, the rescaling
algorithm returns a ciphertext ct

′
at level (` − 1) encrypting p−1` ·m from the

equation [〈ct′, sk〉]q`−1
≈ p−1` · [〈ct, sk〉]q` .

4.3 Distributed Decryption

In the classical definition of MKHE primitive, all the secrets of the parties in-
volved are required to decrypt a multi-key ciphertext. In practice, however, it is
not reasonable to assume that there is a party holding multiple secret keys. In-
stead, we can ‘imagine a protocol between several key owners to jointly decrypt
a ciphertext. The decryption algorithms of our schemes are (approximate) linear
combinations of secrets with known coefficients, and there have been proposed
some secure methods for this task. We introduce one simple solution based on



the noise flooding technique, but any secure solution achieving the same func-
tionality can be used.

The distributed decryption consists of two algorithms: partial decryption
and merge. In the first phase, each party i receives the i-th entry of a ciphertext
and decrypts it with a noise. We set the noise distribution φ which has a larger
variance than the standard error distribution ψ of basic scheme. Then, we merge
partially decrypted results with c0 to recover the message.

• MKHE.PartDec(ci, si): Given a polynomial ci and a secret si, sample an error
ei ← φ and return µi = ci · si + ei (mod q).

• MK-BFV.Merge(c0, {µi}1≤i≤k): Compute µ = c0 +
∑k
i=1 µi (mod q) and return

m = b(t/q) · µe.

• MK-CKKS.Merge(c0, {µi}1≤i≤k): Compute and return µ = c0+
∑k
i=1 µi (mod q).

For a multi-key ciphertext ct = (c0, . . . , ck), both multi-key BFV and CKKS

schemes compute µ = c0 +
∑k
i=1 µi = 〈ct, sk〉+

∑k
i=1 ei ≈ 〈ct, sk〉 (mod q) in the

merge phase. Then, BFV extracts the plaintext by cancelling the scaling factor
(q/t).

5 Bootstrapping for two MKHE schemes

There have been several studies on the bootstrapping procedures of the stan-
dard (single-key) ring-based HE schemes [25, 32, 12, 14, 9]. Previous work had
different goals and solutions depending on the underlying schemes but they are
basically following the Gentry’s technique [24] – homomorphic evaluation of the
decryption circuit. In particular, the BFV and CKKS schemes have a very simi-
lar pipeline for bootstrapping which consists of four steps: (1) Modulus Raise, (2)
Coeff to Slot, (3) Extraction and (4) Slot to Coeff. The second and last steps are
specific linear transformations, which require rotation operations on encrypted
vectors.

In the rest of this section, we first explain how to perform the rotation opera-
tion on multi-key ciphertexts based on the evaluation of Galois automorphisms.
Then, we revisit the bootstrapping procedures for BFV and CKKS to generalize
the existing solutions to our MKHE schemes.

5.1 Homomorphic Evaluation of Galois Automorphisms

The Galois group Gal(Q[X]/(Xn+1)) of a cyclotomic field consists of the trans-
formation X 7→ Xj for j ∈ Z∗2n. We recall that BFV (resp. CKKS) uses the
DFT on Rt (resp. R) to pack multiple plaintext values into a single polynomial.
As noted in [26], these automorphisms provide special functionalities on packed
ciphertext such as rotation of plaintext slots.

The evaluation of an automorphism can be done based on the key-switching
technique. In some more details, let τj : a(X) 7→ a(Xj) be an element of the
Galois group. Given an encryption ct = (c0, c1, . . . , ck) ∈ Rk+1

q of m, we denote



by τj(ct) = (τj(c0), . . . , τj(ck)) the ciphertext obtained by taking τj to the entries
of ct. Then τj(ct) is a valid encryption of τj(m) corresponding the secret key
τj(sk). We then perform the key-switching procedure from τj(sk) back to sk, so
as to generate a new ciphertext encrypting the same message under the original
secret key sk.

In the following, we present two algorithms for the evaluation of the Galois
element. The first algorithm generates an evaluation key for the Galois automor-
phism τj . The second algorithm gathers the evaluation keys of multiple parties
and evaluates τj on a multi-key ciphertext using the multi-key-switching tech-
nique proposed in [10].

• MKHE.GkGen(j; s): Generate a random vector h1 ← U(Rdq) and an error vector

e′ ← ψd. For an RLWE secret s ∈ R, compute h0 = −s · h1 + e′ + τj(s) · g
(mod q). Return the Galois evaluation key as gk = [h0|h1] ∈ Rd×2q .

• MKHE.EvalGal(ct; {gki}1≤i≤k): Let gki = [hi,0|hi,1] be the Galois evaluation

key of the i-th party for 1 ≤ i ≤ k. Given a ciphertext ct = (c0, . . . , ck) ∈ Rk+1
q ,

compute and return the ciphertext ct
′

= (c′0, . . . , c
′
k) by

c′0 = τj(c0) +

k∑
i=1

〈g−1(τj(ci)),hi,0〉 (mod q), and

c′i = 〈g−1(τj(ci)),hi,1〉 (mod q) for 1 ≤ i ≤ k.

In the context of CKKS, all the computations are carried out over modulus
q = q` for level-` ciphertext. We now show the correctness of our algorithms.

Correctness. From the definition, the output ciphertext ct
′

= (c′0, . . . , c
′
k) ←

MKHE.EvalGal(ct; {gki}1≤i≤k) holds

〈ct′, sk〉 = c′0 +

k∑
i=1

c′i · si

= τj(c0) +

k∑
i=1

〈g−1(τj(ci)),hi,0〉+ 〈g−1(τj(ci)),hi,1〉 · si (mod q)

≈ τj(c0) +

k∑
i=1

〈g−1(τj(ci)), τj(si) · g〉 (mod q)

=
〈
τj(ct), τj(sk)

〉
= τj

(
〈ct, sk〉

)
(mod q),

as desired. In other words, if the input ciphertext has the phase µ(X) = 〈ct, sk〉
(mod q), then the phase of the output ciphertext is approximately equal to
τj(µ(X)) = µ(Xj).

Besides the rotation of plaintext slots, we can evaluate the Frobenius endo-
morphism X 7→ Xt on BFV ciphertexts using the same technique. In the case



of CKKS, the map X 7→ X−1 corresponds to the complex conjugation over
plaintext slots.

Any linear transformation can be represented as a linear combination of
shifted plaintext vectors. We note that previous HE optimization techniques [25,
32, 9] ford linear transformations can be directly applied to our MKHE schemes.

5.2 Bootstrapping for Multi-Key BFV

The authors of [12] described a bootstrapping procedure for the single-key BFV
scheme, which follows the paradigm of [32], done for BGV scheme. The boot-
strapping procedure in [12] takes as input a ciphertext with an arbitrary noise
and outputs another ciphertext with a low noise encrypting the same plaintext.
Below we present a multi-key variant of [12].

1. The previous work [12] published an encryption of the secret key by itself
to raise the modulus. However, we observe that this step can be done by
multiplying a constant without extra information. Suppose that the input
ciphertext ct encrypts a message m with a plaintext modulus t, i.e., 〈ct, sk〉 =
q
tm + e (mod q) for some error e. Then we perform a modulus-switching

down to a divisor q′ of q, resulting in 〈ct′, sk〉 = q′

t m + e′ (mod q′), then

multiply the ciphertext with q/q′ and get a ciphertext ct
′′

whose phase is

〈ct′′, sk〉 = q
q′ ·
(
q′

t m+ e′
)

(mod q). This is a trivial (noise free) encryption

of µ = q′

t m+ e′ with plaintext modulus q′ and ciphertext modulus q.
2. It computes a homomorphic linear transform which produces multiple ci-

phertexts holding the coefficients µi ∈ Zt of µ in their plaintext slots. We
note that this step can be done using the additions, scalar multiplications
and multi-key rotations.

3. We homomorphically evaluate a polynomial, called lower digits removal [12],
on the multi-key ciphertexts obtained in previous step. It removes the noise
e′ and leaves the coefficients of m in plaintext slots.

4. The final step is another linear transformation which inverts the second step
and outputs an encryption of m.

As a consequence, the output ciphertext has the phase q
tm+ e′′ (mod q) for an

error which is smaller than the initial noise e.

5.3 Bootstrapping for Multi-Key CKKS

The authors of [14] presented a bootstrapping procedure for the single-key CKKS
scheme and its performance was improved in the follow-up research [9]. The boot-
strapping procedure of CKKS aims to refresh a low-level ciphertext and return
an encryption of the (almost) same messages in a larger ciphertext modulus. We
describe its multi-key version as follows.

1. The first step takes a lowest-level ciphertext ct as an input. Let µ = 〈ct, sk〉
(mod q0). Then 〈ct, sk〉 = q0 ·I+µ for a small I ∈ R, so ct can be considered
as an encryption of t = q0 · I + µ in the largest ciphertext modulus qL.



2. We apply a homomorphic linear transformation to compute one or two ci-
phertexts encrypting the coefficients of t(X) in their plaintext slots. This
step requires multi-key rotation and conjugation described in Section 5.1.

3. We evaluate a polynomial which approximates the reduction modular q0
function. It removes the I part of t and leaves coefficients of µ in the slots.

4. Finally, we apply the inverse linear transformation of the second step to pack
all the coefficients of µ back into a ciphertext.

The output ciphertext ct
′

encrypts the same plaintext µ in a higher level
than the input ciphertext ct, i.e., 〈ct′, sk〉 ≈ µ (mod q`) for some 0 < ` < L.

6 Implementation

We provide a proof-of-concept implementation to show the performance of our
MKHE schemes. Our source code is developed in C++ with Microsoft SEAL ver-
sion 3.2.0 [46] which includes BFV and CKKS implementations. We summarize
our optimization techniques, recommended parameter sets, and some experi-
mental results in this section. Finally, we apply the multi-key CKKS scheme to
evaluate an encrypted neural network model on encrypted data and report the
experimental result to classify handwritten images on the MNIST dataset [40].
All experiments are performed on a ThinkPad P1 laptop: Intel Xeon E-2176M @
4.00 GHz single-threaded with 32 GB memory, compiled with GNU C++ 7.3.0
(-O2).

6.1 Optimization Techniques

Basic Optimizations In the relinearization process, we first compute the ten-
sor product of two ciphertexts which corresponds to the tensor squared secret
sk⊗ sk. It has duplicated entries at (i, j) and (j, i), so we can reduce its dimen-
sion from (k + 1)2 down to 1

2k(k + 1). Both the size of the relinearization key
and complexity of the algorithm are almost halved. Furthermore, each of the
diagonal entries s2i of sk ⊗ sk depends on a single party, so we can include a
key-switching key for s2i in the generation of an evaluation key. It increases the
size of evaluation keys but reduces the complexity and noise of relinearization.

RNS and NTT Our schemes are designed on the ring structure Rq, so we need
to optimize the basic polynomial arithmetic. There is a well-known technique
to use an RNS by taking a ciphertext modulus q =

∏L
i=0 pi which is a product

of coprime integers. Based on the ring isomorphism Rq →
∏L
i=0Rpi , a 7→ (a

(mod pi))0≤i≤L, we achieve asymptotic/practical improvements in polynomial
arithmetic over Rq. In particular, it has been studied how to design full-RNS
variants of BFV and CKKS [4, 30, 15], which do not require any RNS conversions.
In addition, each of base prime can be chosen properly so that there exists a (2n)-
th root of unity modulo pi. It allows us to exploit an efficient Number Theoretic
Transformation (NTT) modulo pi. Our implementation adapts these techniques
to improve the speed of polynomial arithmetic.



Parameter Public Key Evaluation Key

ID n dlog qe dlog pie # p′is Size Gen. Size Gen.

I 213 218 49–60 4 0.75 MB 3 ms 2.25 MB 8 ms

II 214 438 53–60 8 7 MB 24 ms 21 MB 59 ms

III 215 881 54–60 16 60 MB 195 ms 180 MB 470 ms

Table 1. Proposed parameter sets. log q and log pi denote the bit lengths of the largest
RLWE modulus and individual RNS primes, respectively. # p′is denotes the number of
RNS primes. The standard deviation of fresh RLWE samples is σ = 3.2. Public keys’
and evaluations keys’ generation times and sizes are those of each party. ms = 10−3

sec.

Gadget Decomposition As mentioned before, the gadget decomposition has
a major effect on the performance of homomorphic arithmetic. Bajard et al. [4]

observed that the formula a =
∑
i gi ·[a]pi (mod q) where gi =

[(∏
j 6=i pj

)−1]
pi

·(∏
j 6=i pj

)
can be used to build an RNS-friendly decomposition a 7→ ([a]pi)i with

the gadget vector g = (gi)i. We adapt this decomposition method and take an
advantage of an RNS-based implementation by storing ciphertexts in the RNS
form.

In [4, 30], the authors further combined this method with the classical digit
decomposition method to provide a more fine-grained control of the trade-off be-
tween complexity and noise growth. However, we realize that this hybrid method
increases the decomposition degree (and thereby space and computational com-
plexity) several times, and the special modulus technique described in Section 3.3
provides a much better trade-off. Therefore, the digit decomposition is not used
in our implementation.

6.2 Micro-benchmarks for MKHE Schemes

Table 1 illustrates the selected parameter sets used in experiments. They are de-
fault parameter sets in Microsoft SEAL which provide at least 128-bit of security
level according to LWE-estimator [3] and HE security standard [2]. Generation
time and size of secret keys, and execution time of encryption are the same as
those in single-key BFV and CKKS. Decryption and ciphertext addition take
1
2 (k+1) times longer than the ordinary HE schemes. We remark that generation
time and size of public and evaluation keys {(bi,Di)}1≤i≤k do not depend on
the number of parties or the scheme because the generation can be executed in
a synchronous way.

In our experiments, a homomorphic multiplication is always followed by a
relinearization procedure. BFV requires more NTTs than CKKS overall to per-
form these operations, and is therefore slower, which is confirmed by the timing
results.



ID #Parties
Mult + Relin EvalGal

BFV CKKS BFV CKKS

I

1 20 ms 8 ms 3 ms 4 ms

2 44 ms 22 ms 7 ms 8 ms

4 116 ms 67 ms 14 ms 16 ms

8 365 ms 229 ms 28 ms 31 ms

II

1 110 ms 59 ms 22 ms 24 ms

2 257 ms 165 ms 47 ms 49 ms

4 717 ms 521 ms 88 ms 95 ms

8 2, 350 ms 1, 845 ms 176 ms 193 ms

III

1 675 ms 465 ms 170 ms 172 ms

2 1, 715 ms 1, 364 ms 333 ms 359 ms

4 5, 025 ms 4, 287 ms 646 ms 711 ms

8 17, 450 ms 15, 159 ms 1, 332 ms 1, 413 ms

Table 2. Execution time that depends on the number of parties. Multiplication is
always followed by a relinearization in MKHE. ms = 10−3 sec.

The execution times of multiplications in both MKHE schemes are asymptot-
ically quadratic in the number of parties as discussed in Section 3.3. In practice,
they are better than quadratic, as reported in Table 2. This is because both
multiplication and relinearization include a notable portion of computation that
is linear in the number of parties. The execution times of homomorphic evalua-
tion of Galois automorphisms are almost linear on the number of the parties as
described in Section 5.1.

For the single-party scenario in Table 2, we measured performance of our
modified Microsoft SEAL [46] with a special modulus. It is infeasible to fairly
compare the ordinary BFV and CKKS with their multi-key variants because the
performance of a scheme can be analyzed from various perspectives: space/time
complexity, noise growth, functionality, etc. It is provided merely as a reference
point, for a more portable estimation of MKHE on different processors.

6.3 Application to Oblivious Neural Network Inference

The authors of [34] proposed a novel framework to test encrypted neural net-
works on encrypted data in the single-key scenario.We consider the same service
paradigm but in a multi-key setting: the data and trained model are encrypted
under different keys.

Homomorphic Evaluation of CNN We present an efficient strategy to eval-
uate CNN prediction model on the MNIST dataset. Each image is a 28 × 28
pixel array and will be labeled with 10 possible digits after an arbitrary number
of hidden layers. We assume that a neural network is trained with the plaintext



Layer Description

Convolution
Input image 28× 28, window size 4× 4,

stride (2, 2), number of output channels 5

1st square Squaring each of the 845 inputs

FC-1 Fully connecting with 845 inputs and 64 outputs

2nd square Squaring each of the 64 inputs

FC-2 Fully connecting with 64 inputs and 10 outputs
Table 3. Description of our CNN to the MNIST dataset.

dataset in the clear. Table 3 describes our neural network topology which uses
one convolution layer and two fully-connected (FC) layers with square activation
function. The final step is to apply the softmax activation function for a purpose
of probabilistic classification, so it is enough to obtain an index of maximum val-
ues of outputs in a prediction phase. Our objective is to predict a single image
in an efficient way, thereby achieving a low latency. In Appendix C, we describe
the detailed algorithms for encryption and evaluation.

The Convolutional Layer. As noted in [35], strided convolution can be de-
composed into a sum of simple convolutions (i.e., the stride parameter = 1).
From our choice of the parameters, each of such simple convolutions takes as
inputs 14 × 14 images and 2 × 2 filters. This representation allows more SIMD
parallelism, since we can pack all the inputs into a single ciphertext and perform
four simple convolutions in parallel. Once this is done, we can accumulate the
results across plaintext slots using rotate-and-sum operations in [31]. Moreover,
we can pack multiple channels in a single ciphertext as in [35, Section VI.D],
yielding in a fully-packed ciphertext of the convolution result.

The First Square Layer. This step applies the square activation function to
all the encrypted output of the convolutional layer in an SIMD manner.

The FC-1 Layer. In general, an FC layer with ni inputs and no outputs can
be computed as a matrix-vector multiplication. Let W and v be the no × ni
weight matrix and ni-length vector, respectively. We assume that ni and no are
smaller than the number of plaintext slots, and no is much lower than ni in the
context of FC layers. Halevi and Shoup [31] presented the diagonal encoding
method which puts a square matrix in diagonal order, multiplies each of them
with a rotation of the input vector, and then accumulates all the output vectors
to obtain the result. Juvekar et al. [35] extended the method to multiply a vector
by a rectangular matrix. If the input vector is encrypted in a single ciphertext,
the total complexity is no homomorphic multiplications, (no−1) rotations of the
input ciphertext of v, and log(ni/no) rotations for rotate-and-sum algorithm.

We extend their ideas to split the original matrix W into smaller sized blocks
and perform computation on the sub-matrices as shown in Fig. 2. Suppose that
the vector v is split into ` many sub-strings with the same length. For simplicity,
we consider the first ` rows of W. We first apply the diagonal method to arrange



Fig. 2. Our matrix-vector multiplication algorithm (` = 2).

the 1× (ni/`) sized sub-matrices of W in a way that intermediate numbers are
aligned in the same position across multiple slots after homomorphic multiplica-
tions. To be precise, the encryptions of diagonal components are multiplied with
` rotations of the encrypted vector and all these encryptions are added together
similar to the diagonal method. Then, the output ciphertext represents (ni/`)-
sized ` chunks, each containing partial sums of ` entries of ni inputs. Finally,
we can accumulate these using a rotate-and-sum algorithm with log(ni/`) rota-
tions. As a consequence, the output ciphertext encrypts the first ` many entries
of Wv. We repeat this procedure for each ` many rows of W, resulting in (no/`)
ciphertexts.

When ni is significantly smaller than the number of plaintext slots ns, the
performance can be improved by packing multiple copies of the input vector into
a single ciphertext and performing (ns/ni) aforementioned operations in parallel.
The computational cost is (no · ni)/ns homomorphic multiplications, (` − 1)
rotations of the input ciphertext of v, and (no · ni)/(ns · `) · log(ni/`) rotations.
We provide additional details in Appendix C.2. As a result, our method provides
a trade-off between rotations on the same input ciphertext (which can benefit
from the hoisting optimization of [33]) and rotations on distinct ciphertexts
(which cannot benefit from hoisting).

As described in Fig. 2, all slots except the ones corresponding to the result
components may reveal information about partial sums. We therefore multiply
the output ciphertexts by a constant zero-one plaintext vector to remove the
information.



The Second Square Layer. This step applies the square activation function
to all the output nodes of the first FC layer.

The FC-2 Layer. This step performs a multiplication with small sized weight
matrix U and vector v. As discussed in [31], it can be considered as the linear
combination of U’s columns using coefficients from v. Suppose that the column
vectors are encrypted in a single ciphertext in such a way that they are aligned
with the encrypted vector. We first repeatedly rotate the encryption of the vector
to generate a single ciphertext with no copies of each entry. Then, we apply pure
SIMD multiplication to multiply each column vector by the corresponding scalar
of the vector in parallel. Finally, we aggregate all the resulting columns over the
slots to generate the final output.

Performance Evaluation We evaluated our framework to classify encrypted
handwritten images of the MNIST dataset. We used the library keras [18] with
Tensorflow [1] to train the CNN model from 60,000 images of the dataset.

We employ the special modulus variant of the multi-key CKKS scheme to
achieve efficiency of approximate computation. Each layer of the network has a
depth of one homomorphic multiplication (except the first FC layer requiring one
more depth for multiplicative masking), so it requires 6 levels for the evaluation
of CNN. We chose the parameter Set-II from Table 1 so as to cope with such
levels of computations.

The data owner first chooses one among 10,000 test images in MNIST dataset,
normalizes it by dividing by the maximum value 255, and encrypts it into a single
ciphertext using the public key, which takes 1.75 MB of space. Meanwhile, the
model provider generates a relatively large number of ciphertexts for the trained
model: four for the multiple channels, eight for the weight matrix of the FC-1
layer, and one of each for the other weight or bias. Therefore, the total size of
the output ciphertexts is 18.5 MB and it takes roughly 7 times longer to encrypt
the trained model than an image, but it is an one-time process before data
outsourcing and so it is a negligible overhead. After the evaluation, the cloud
server outputs a single multi-key ciphertext encrypting the prediction result with
respect to the extended secret key of the data and model owners. Table 4 shows
the timing result for the evaluation of CNN. It takes about 1.8 seconds to classify
an encrypted image from the encrypted training model.

Our parameter guarantees at least 32-bit precision after the decimal point.
That is, the infinity norm distance between encrypted evaluation and plain com-
putation is bounded by 2−32. Therefore, we had enough space to use the noise
flooding technique for decryption. In terms of the accuracy, it achieves about
98.4% on the test set which is the same as the one obtained from the evaluation
in the clear.

Comparison with Previous Works In Table 5, we compare our benchmark
result with the state-of-the-art frameworks for oblivious neural network infer-
ence: CryptoNets [29], MiniONN [41], Gazelle [35], and E2DM [34]. The first



Stage Runtime

Data owner Image encryption 31 ms

Model provider Model encryption 236 ms

Cloud
server

Convolutional layer 705 ms

1st square layer 143 ms

FC-1 layer 739 ms

2nd square layer 75 ms

FC-2 layer 135 ms

Total evaluation 1,797 ms
Table 4. Performance breakdown for evaluating an encrypted neural network on en-
crypted MNIST data, where the two encryptions are under different secret keys.

Framework Methodology
Runtime

Latency Amortized

CryptoNets HE 570 s 0.07 s

MiniONN HE, MPC 1.28 s -

Gazelle HE, MPC 0.03 s -

E2DM HE 28.59 s 0.45 s

Ours MKHE 1.80 s -
Table 5. MNIST benchmarks of privacy-preserving neural network frameworks.

column indicates the framework and the second column denotes the crypto-
graphic primitives used for preserving privacy. The last columns give running
time for image classification as well as amortized time per instance if applicable.

Among the aforementioned solutions for private neural network prediction,
E2DM relies on a third-party authority holding a secret key of HE, since the
data and model are under the same secret key. CryptoNets has good amortized
complexity, but it has a high latency for a single prediction. MiniONN and
Gazelle have good latency, but they require both parties to be online during the
protocol execution, and at least one party performs local work proportional to
the complexity of the function being evaluated. Also, the number of rounds for
MiniONN and Gazelle scales with the number of layers in the neural network.
On the other hand, our solution has a constant number of rounds.

Moreover, our solution allows the parties to outsource homomorphic evalua-
tion to an untrusted server (e.g. a VM in the cloud with large computing power),
so both parties only need to pay encryption/decryption cost, and the communi-
cation cost only scales with the input/model sizes, but not the complexity of the
network itself. This feature is made possible since our scheme supports multi-
key operations. Note that the server is only assumed to be semi-honest: we do
not require non-collusion assumptions since even if the server colludes with one
party, they cannot learn the other party’s private inputs due to the IND-CPA



security of MKHE. Therefore, we believe that our work presents an interesting
point in the design space of oblivious machine learning inference.

7 Conclusion

In this paper, we presented practical multi-key variants of the BFV and CKKS
schemes and their bootstrapping methods. We provided the first experimental
results of MKHE with packed ciphertexts by implementing our schemes. The
main technical contribution is to propose new relinearization algorithms achiev-
ing better performance compared to prior works [13, 50]. Finally, we showed that
our scheme can be applied to secure on-line prediction services by evaluating an
encrypted classifier on an encrypted data under two different keys. We imple-
mented our protocol on convolutional neural networks trained on the MNIST
dataset and showed that it can achieve a low end-to-end latency by leverag-
ing the optimized homomorphic convolutions and homomorphic matrix-vector
multiplications.
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42. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 1219–1234.
ACM, 2012.

43. P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 38th IEEE Symposium on Security and Privacy (SP),
pages 19–38. IEEE, 2017.

44. P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key
FHE. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 735–763. Springer, 2016.



45. C. Peikert and S. Shiehian. Multi-key FHE from LWE, revisited. In Theory of
Cryptography Conference, pages 217–238. Springer, 2016.

46. Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL, Feb. 2019.
Microsoft Research, Redmond, WA.

47. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs,
codes and cryptography, 71(1):57–81, 2014. Early verion at http://eprint.iacr.

org/2011/133.

48. X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 39–56. ACM, 2017.

49. A. C.-C. Yao. How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

50. T. Zhou, N. Li, X. Yang, Y. Han, and W. Liu. Efficient multi-key FHE with
short extended ciphertexts and less public parameters. Cryptology ePrint Archive,
Report 2018/1054, 2018. https://eprint.iacr.org/2018/1054.

A Special Modulus Variant of Multi-Key CKKS

• MKHE.Setup(1λ): Given a security parameter λ, set the RLWE dimension n, ci-
phertext modulus q, special modulus p, key distribution χ and error distribution
ψ over R. Generate a random vector a← U(Rdpq). Return the public parameter
pp = (n, p, q, χ, ψ,a).

• UniEnc(µ; s): For an input plaintext µ ∈ R, generate a ciphertext D =

[d0|d1|d2] ∈ Rd×3pq as follows:

1. Sample r ← χ.
2. Sample d1 ← U(Rdpq) and e1 ← ψd, and set d0 = −s · d1 + e1 + pr · g

(mod pq).
3. Sample e2 ← ψd and set d2 = r · a + e2 + pµ · g (mod pq) in Rdpq.

• MKHE.KeyGen(pp): Each party i samples the secret key si ← χ, an error vector

ei ← ψd and sets the public key as bi = −si ·a+ei (mod pq). Set the evaluation
key Di ← UniEnc(si; si).

• Relin(ct; {(Di,bi)}1≤i≤k): Given an extended ciphertext ct = (ci,j)0≤i,j≤k ∈

R
(k+1)2

q and k pairs of evaluation and public keys {(Di,bi)}1≤i≤k ∈ (Rd×3pq ×
Rdpq)

k, generate a ciphertext ct
′ ∈ Rk+1

q as described in Alg. 3.

• MK-CKKS.Enc(m;bi,a): Let m ∈ R be an input plaintext and let a = a[0]
and bi = bi[0] be the first entries of the common reference string and public
key of the i-th party. Sample v ← χ and e0, e1 ← ψ. Return the ciphertext
ct = (m, 0) +

⌊
p−1 · (c0, c1)

⌉
∈ R2

q where (c0, c1) = v · (b, a) + (e0, e1) (mod pq).

• MK-CKKS.Dec, Add, Mult, Rescale: These algorithms are the same as the ones
described in Section 4.2.



Algorithm 3 Relinearization method with modulus raising

Input: ct = (ci,j)0≤i,j≤k, {(Di = [di,0|di,1|di,2],bi)}1≤i≤k.

Output: ct
′

= (c′i)0≤i≤k ∈ Rk+1
q .

1: (c′′i )0≤i≤k ← 0 . Create a temporary vector modulo pq
2: for 1 ≤ i, j ≤ k do
3: c′′i,j ← 〈g−1(ci,j),bj〉 (mod pq)

4: c′i,j ←
⌊
p−1 · c′′i,j

⌉
. It is a polynomial modulo q

5: (c′′0 , c
′′
i )← (c′′0 , c

′′
i ) + g−1(c′i,j) · [di,0|di,1] (mod pq)

6: c′′j ← c′′j + 〈g−1(ci,j),di,2〉 (mod pq)
7: end for
8: c′0 ← c0,0 +

⌊
p−1 · c′′0

⌉
(mod q)

9: for 1 ≤ i ≤ k do
10: c′i ← c0,i + ci,0 +

⌊
p−1 · c′′i

⌉
(mod q)

11: end for

• MKHE.GkGen(j; s): Generate a random vector h1 ← U(Rdpq) and an error vector

e′ ← ψd. Compute h0 = −s · h1 + e′ + τj(s) · g (mod pq). Return the Galois
evaluation key as gk = [h0|h1] ∈ Rd×2pq .

• MKHE.EvalGal(ct; {gki}1≤i≤k): Let gki = [hi,0|hi,1] be the Galois evaluation

key of the i-th party for 1 ≤ i ≤ k. Given a ciphertext ct = (c0, . . . , ck) ∈ Rk+1
q ,

compute

c′′0 =

k∑
i=1

〈g−1(τj(ci)),hi,0〉 (mod pq) and

c′′i = 〈g−1(τj(ci)),hi,1〉 (mod pq) for 1 ≤ i ≤ k,

then return the ciphertext ct
′

= (c0, . . . , c
′
k) ∈ Rk+1

q where c′0 = τj(c0) +⌊
p−1 · c′′0

⌉
(mod q) and c′i =

⌊
p−1 · c′′i

⌉
(mod q) for 1 ≤ i ≤ k.

B Noise Analysis

We provide an average-case noise estimation on the variances of polynomial
coefficients. In the following, we make a heuristic assumption that the coefficients
of each polynomial behave like independent zero-mean random variables of the
same variance. We denote by Var(a) = Var(ai) the variance of its coefficients
for given random variable a =

∑
i ai · Xi ∈ R over R. Hence, the product

c = a · b of two polynomials will have the variance of Var(c) = n ·Var(a) ·Var(b).
More generally, for a vector a ∈ Rd of random variables, we define Var(a) =
1
d

∑d
i=1 Var(a[i]).

Specifically, we let Vg = Var(g−1(a)) of a uniform random variable a over
Rq to estimate the size of gadget decomposition. Recall that our implementa-
tion exploits the RNS-friendly decomposition Rq →

∏
iRpi , a 7→ ([a]pi)i for



distinct word-size primes of the same bit-size so that d = dlog q/ log pie and

Vg ≈ 1
12d

∑d
i=1 p

2
i . Finally, we assume that every ciphertext ct ∈ Rk+1

q behaves

as if it is a uniform random variable over Rk+1
q .

B.1 Relinearization

We first specify some distributions for detailed analysis. We set the key distribu-
tion χ and the distribution ψ as the uniform distribution over the set of binary
polynomials and the Gaussian distribution of variance σ2, respectively.

Method 1. We first analyze the conversion algorithm Ki,j ← Convert(Di,bj).
Let Di = [di,0|di,1|di,2] be an uni-encryption of µi ∈ R encrypted by the secret si
and (sj ,bj) a pair of the secret and public keys of the j-th party, i.e., bj = −sj ·
a+ej (mod q), di,0 = −si ·di,1+ei,1+ri ·g (mod q), and di,2 = ri ·a+ei,2+µi ·g
(mod q) for fresh errors ej , ei,1 and ei,2. We observe that

ki,j,0 + si · ki,j,1 = Mj · (di,0 + si · di,1) = Mjei,1 + ribj (mod q),

sj · ki,j,2 = risj · a + sj · ei,2 + µisj · g (mod q),

and consequently ki,j,0 + si · ki,j,1 + sj · ki,j,2 = (Mjei,1 + riej + sjei,2) + µisjg
(mod q). Therefore, the noise Mjei,1+rie+sjei,2 ∈ Rd of the output ciphertext
has the variance of

Vconv = nσ2 · (d · Vg + 1) .

We now consider an extended ciphertext ct = (ci,j)0≤i,j≤k and the output
ct
′ ← Relin(ct; {(Di,bi)}1≤i≤k) of the relinearization procedure. As shown in

Section 3.3, it satisfies that

〈ct′, sk〉 = c′0 +

k∑
i=1

c′i · si

= c0,0 +

k∑
i=1

(c0,i + ci,0)si +

k∑
i,j=1

g−1(ci,j) ·Ki,j · (1, si, sj) (mod q)

= 〈ct, sk⊗ sk〉+

k∑
i,j=1

〈g−1(ci,j), ei,j〉 (mod q),

where ei,j = Ki,j · (1, si, sj)− sisj · g (mod q) denotes the error of Ki,j . Hence,

the relinearization error elin =
∑k
i,j=1〈g−1(ci,j), ei,j〉 has the variance of

Vlin = k2 · nd · Vg · Vconv ≈ k2 · n2d2σ2 · V 2
g .

This variance can be reduced to about half by eliminating the duplicated entries
of sk ⊗ sk as explained in Section 6.1. We also note that the factor k2 in the
formula can be reduced down to k1k2 if ct = ct1 ⊗ ct2 is the tensor product of
two sparse ciphertexts cti corresponding to ki ≤ k secrets.



Method 2. Suppose that ct = (ci,j)0≤i,j≤k is an extended ciphertext and let
ct
′ ← Relin(ct; {(Di,bi)}1≤i≤k) be the output of the relinearization procedure.

As noted in Section 3.3, we have that

g−1(c′i,j) · [di,0|di,1] · (1, si) = ri · c′i,j + 〈g−1(c′i,j), ei,1〉 (mod q),

and

〈g−1(ci,j),di,2〉 · sj = 〈g−1(ci,j), risj · a + sj · ei,2 + sisj · g〉
= 〈g−1(ci,j), ri · (−bj + ej) + sj · ei,2 + sisj · g〉
= −ri · c′i,j + ci,j · sisj + ei,j (mod q).

where ei,j = 〈g−1(ci,j), ri·ej+sj ·ei,2〉 (mod q). The variance of ei,j is n2d·σ2·Vg.
From the equation

〈ct′, sk〉 = 〈ct, sk⊗ sk〉+

k∑
i,j=1

(
〈g−1(c′i,j), ei,1〉+ ei,j

)
(mod q),

the variance of a relinearization error elin is obtained by

Vlin = k2 · (n2 + n)d · σ2 · Vg ≈ k2 · n2d · σ2 · Vg.

Special Modulus Variant of Method 2. In lines 3 ∼ 6 of Alg. 3, we add
g−1(c′i,j) · [di,0|di,1] and 〈g−1(ci,j),di,2〉 to the temporary ciphertext. We first
note that p · c′i,j = c′′i,j − [c′′i,j ]p (mod pq) and

g−1(c′i,j) · (di,0 + si · di,1)

=pric
′
i,j + 〈g−1(c′i,j), ei,1〉 (mod pq)

=〈g−1(ci,j), ribj〉 − ri · [c′′i,j ]p + 〈g−1(c′i,j), ei,1〉 (mod pq).

Meanwhile, the other term satisfies that

〈g−1(ci,j), sj · di,2〉
=〈g−1(ci,j),−ribj + riej + psisjg + sjei,2〉 (mod pq)

=pci,j · sisj − 〈g−1(c′i,j), ribj〉+ 〈g−1(ci,j), riej + sjei,2〉 (mod pq).

Consequently, the phase of the temporary ciphertext (c′′i )0≤i≤k is increased by
pci,j · sisj + ei,j for the error

ei,j = −ri · [c′′i,j ]p + 〈g−1(c′i,j), ei,1〉+ 〈g−1(ci,j), riej + sjei,2〉,

whose variance is Var(ei,j) = (n2 + n)d · Vg · σ2 + 1
24np

2. We repeat it for all
1 ≤ i, j ≤ k, so the temporary ciphertext will satisfy

c′′0 +

k∑
i=1

c′′i · si = e+ p ·
k∑

i,j=1

ci,j · sisj (mod pq)



for the error e =
∑k
i,j=1 ei,j of varianc Var(e) = k2 · Var(ei,j). After reducing its

modulus down to q, we get the output ciphertext ct
′

= (c′i)0≤i≤k whose phase is

〈ct′, sk〉 = 〈ct, sk⊗ sk〉+ p−1 · e+ erd

with an additional rounding error erd = −p−1 · 〈[(c′′i )0≤i≤k]p, sk〉 of variance
1
24kn+ 1

12 . The final relinearization error elin = p−1 · e+ erd has the variance

Vlin = p−2 · k2(n2 + n)dσ2 · Vg +
1

24
k2n+

1

24
kn+

1

12

≈ p−2 · k2n2d · σ2 · Vg +
1

24
(k2 + k)n.

B.2 Multi-Key BFV

Encryption. Let ct = (c0, c1) ∈ R2
q be an encryption of m ∈ Rt generated by

the randomness r ← χ and e0, e1 ← ψ. Then we have

c0 + c1 · s = ∆ ·m+ r · (b+ a · s) + (e0 + e1 · s) (mod q)

= ∆ ·m+ (r · e+ e0 + e1 · s) (mod q),

where e = e[0] is a noise of public key. Therefore, the encryption noise eenc =
r · e+ e0 + e1 · s has the variance of

Venc = σ2 · (1 + n) ≈ σ2n.

Multiplication. Suppose that cti is an encryption ofmi for i = 1, 2, i.e., 〈cti, sk〉 =

q · Ii + ∆ ·mi + ei for some Ii and ei in R. The variance of Ii =
⌊
1
q 〈cti, sk〉

⌉
is

computed by Var(Ii) ≈ 1
12

(
1 + 1

2kn
)
≈ 1

24kn since 1
q · cti behaves like a uniform

random variable over 1
q ·R

k+1
q whose variance is approximately equal to 1

12 .
The tensor product of the input ciphertexts satisfies

〈ct1 ⊗ ct2, sk⊗ sk〉 = 〈ct1, sk〉 · 〈ct2, sk〉
=∆2 ·m1m2 + q · (I1e2 + I2e1) +∆ · (m1e2 +m2e1) + e1e2 (mod q ·∆),

and consequently the ciphertext ct = b(t/q) · ct1 ⊗ ct2e has the phase

〈ct, sk⊗ sk〉 = ∆ ·m1m2 + (t · (I1e2 + I2e1) + (m1e2 +m2e1) +∆−1 · e1e2 + erd)

for the rounding error erd = 〈(t/q) · ct1 ⊗ ct2 − ct, sk⊗ sk〉. Therefore, the mul-
tiplication error

emul =
(
t · (I1e2 + I2e1) + (m1e2 +m2e1) +∆−1 · e1e2 + erd

)
is dominated by the first term t · (I1e2 + I2e1) whose variance is

Vmul = nt2 · (Var(I1) · Var(e2) + Var(I2) · Var(e1)) ≈ 1

24
kn2t2 · (Var(e1) + Var(e2)).



B.3 Multi-Key CKKS

Encryption. The CKKS scheme has the same encryption error as BFV.

Multiplication. For i = 1, 2, let µi = 〈cti, sk〉 be the phase of an input cipher-
text cti. Then ct = ct

′
1⊗ct

′
2 has the phase 〈ct, sk⊗sk〉 = 〈ct′1, sk〉·〈ct

′
2, sk〉 = µ1 ·µ2

(mod q). Therefore, the output ct
′ ← Relin(ct; rlk) satisfies that 〈ct′, sk〉 =

µ1µ2 + elin for a relinearization error elin of variance Vlin. As explained above,
this variance can be reduced down if cti has some zero entries.

Rescaling. Let ct
′ ← MK-CKKS.Rescale(ct) =

⌊
p−1` · ct

⌉
∈ Rk+1

q`−1
for ct ∈ Rk+1

q`
.

Then, we have

〈ct′, sk〉 = p−1` · [〈ct, sk〉]q` + erd (mod q`−1)

for the rescaling error erd =
〈⌊
p−1` · ct

⌉
− p−1` · ct, sk

〉
from rounding. Note that

each component of
⌊
p−1` · ct

⌉
− p−1` · ct behaves like a uniform random variable

on p−1` ·Rp` whose variance is 1
12 . Therefore, the rescaling error has the variance

of

Vres =
1

12

(
1 +

1

2
kn

)
≈ 1

24
kn.

C Homomorphic Evaluation of CNN

For a d1×d matrix A1 and a d2×d matrix A2, (A1;A2) denotes the (d1+d2)×d
matrix obtained by concatenating two matrices in a vertical direction. If two
matrices A1 and A2 have the same number of rows, (A1|A2) denotes a matrix
formed by horizontal concatenation. As defined in [34], there is a row ordering
encoding map to transform a vector of dimension n = d2 into a matrix in Rd×d.
For a vector a = (ak)0≤k<n, we define the encoding map mat : Rn → Rd×d by
mat : a 7→ A = (ad·i+j)0≤i,j<d, i.e., a is the concatenation of row vectors of
A. Let vec denote its inverse mapping. We use Ai,`1:`2 to denote a vector of
length (`2 − `1) formed by extracting from the `1-th entry to the (`2 − 1)-th
entry of the i-th row of A. PadZeros(A, v, dir) pads a matrix A with zeros in
the direction specified by dir where v is a vector of non-negative integers that
specifies both the amount of padding to add and the dimension along which to
add it. For example, direction can be specified as one of the following values: L
(left), R (right), U (upper), and B (bottom). For simplicity, when A is given as
a vector and we want to pad zeros to the right side of the vector, we will omit
the direction in the notation.

C.1 Encryption of Data and Trained Model

Alg. 4 takes as the input an image X = (xi,j) ∈ R28×28 and the public key bD
of the image provider. Alg. 5 takes the multiple channels of the convolutional
layer from the trained model as inputs and generates their encryptions using the
public key of the model provider bM . Alg. 6 takes as the inputs the weights and
biases of the FC layers and outputs their encryptions using the public key.



Algorithm 4 Encryption of an image

Input: Image X ∈ R28×28, public key of the image provider bD.
Output: ct.X.
1: for 0 ≤ i, j < 2 do
2: X′i,j ← (x2k+i,2l+j)0≤k,l≤13 ∈ R14×14

3: Xi,j ← (X′i,j ; . . . ;X
′
i,j) ∈ R70×14

4: vi,j ← PadZeros(vec(X̄i,j), 2
10 − 70 · 14) ∈ R1024

5: end for
6: v← (v0,0|v0,1|v1,0|v1,1) ∈ R4096

7: v← (v|v) ∈ R8192

8: ct.X ← MK-CKKS.Enc(v;bD,a)

Algorithm 5 Encryption of multiple channels

Input: {Y(k) = (y
(k)
i,j ) ∈ R4×4}0≤k<5, public key of the model provider bM .

Output: {ct.Yl}0≤l<4.
1: for 0 ≤ i, j < 4 do
2: vi,j ← ∅ . Null string
3: for 0 ≤ k < 5 do
4: Yk,i,j ← (y

(k)
i,j , . . . , y

(k)
i,j ) ∈ R13×13

5: Y′k,i,j ← PadZeros(Yk,i,j , (1, 1), (R,B)) ∈ R14×14

6: vi,j ← (vi,j |vec(Y′k,i,j))
7: end for
8: vi,j ← PadZeros(vi,j , 2

10 − 5 · 14 · 14) ∈ R1024

9: end for
10: for 0 ≤ i, j < 2 do
11: v2i+j ← (v2i,2j |v2i,2j+1|v2i+1,2j |v2i+1,2j+1) ∈ R4096

12: v2i+j ← (v2i+j |v2i+j) ∈ R8192

13: ct.Y2i+j ← MK-CKKS.Enc(v2i+j ;bM ,a)
14: end for

C.2 Homomorphic Evaluation of CNN

We start with a useful aggregation operation across plaintext slots from the
literature [31, 38]. This algorithm is referred as AllSum, which is parameter-
ized by integers ϕ and α. See Algorithm 7 for an implementation. We de-
note by MKHE.Rot(ct; k) a multi-key rotation which transforms an input cipher-
text ct into a new ciphertext that encrypts a shifted plaintext vector by k
of the original message. Given a ciphertext ct representing a plaintext vector
m = (m0, . . . ,m`−1) ∈ R` for ` = α · ϕ, the AllSum algorithm outputs a ci-

phertext ctout encrypting α copies of the vector (
∑α−1
j=0 mj·ϕ,

∑α−1
j=0 mj·ϕ+1, . . . ,∑α−1

j=0 m(j+1)·ϕ−1) ∈ Rϕ. This can be implemented using rotations and additions.

Matrix-Vector Multiplication. Assume that ni is smaller than the number
of plaintext slots ns and the input no×ni matrix W is split into 1× (ni/`) sized



sub-matrices, denoted by wi,j for 0 ≤ i < no and 0 ≤ j < `. Then, we can pack
(` ·ns)/ni many different sub-matrices into a single ciphertext, and nc = (ns/ni)
copies of the input vector v in a single ciphertext. For example, consider the first
(` · nc) rows of W. We encode nc many the first diagonal vectors of the matrix
into a plaintext vector, i.e.,(

(w0,0|w1,1| . . . |w`−1,`−1)|
(w`,0|w`+1,1| . . . |w2`−1,`−1)| . . .
(w`·(nc−1),0|w`·(nc−1)+1,1| . . . |w`·(nc−1)+`−1,`−1)

)
∈ Rns .

As such, each extended diagonal vectors are encrypted in a single ciphertext and
these ` many ciphertexts are multiplied with ` rotations of the encrypted vector
v. Then we add them together similar to the original diagonal method and the
output ciphertext represents (ni/`)-sized (` · nc) chunks, each of which contains
partial sums of ` entries of ni inputs. Finally, we can accumulate these using
a rotate-and-sum algorithm with log(ni/`) rotations, yielding in a ciphertext
that contains the first (` · nc) entries of Wv ∈ Rno . We repeat these procedures
no/(` ·nc) times. In the end, we get no/(` ·nc) ciphertexts, each containing (` ·nc)
entries of the result. The computational cost is ` · (no/(` · nc)) = (no · ni)/ns
homomorphic multiplications, (` − 1) rotations of the encrypted vector v, and
(no/(` · nc)) · log(ni/`) rotation on distinct ciphertexts.

Evaluation Strategy of CNN. Alg. 8 provides an explicit description of
homomorphic evaluation of CNN. We denote by SMult(ct,u) the multiplica-
tion of ct with a scalar u. For simplicity, we omit the evaluation/public keys
{(Di,bi)}1≤i≤2 in homomorphic multiplication process.



Algorithm 6 Encryption of weights & biases of FC layers

Input: W ∈ R64×845, z(1) ∈ R64, U ∈ R10×64, z(2) ∈ R10, public key of the
model provider bM .

Output: {ct.Wk}0≤k<8, ct.z1, ct.U , ct.z2.

[Encryption of weight of FC-1]
1: W′ ← ∅
2: for 0 ≤ i < 64 do
3: w← ∅
4: for 0 ≤ j < 5 do
5: Wj ← mat(Wi,132·j:132·(j+1)) ∈ R13×13

6: W′
j ← PadZeros(Wj , (1, 1), (R,B)) ∈ R14×14

7: w← (w|vec(W′
j))

8: end for
9: w← PadZeros(w, 210 − 5 · 14 · 14) ∈ R1024

10: W′ ← (W′;w)
11: end for
12: for 0 ≤ k < 8 do
13: v← ∅
14: for 0 ≤ i < 64 do

15: v←
(
v |W′

i,27·((i+k)%8):27·((i+k+1)%8)

)
16: end for
17: ct.Wk ← MK-CKKS.Enc(v;bM ,a)
18: end for

[Encryptions of bias of FC-1/weight & bias of FC-2]
19: v1 ← ∅, u← ∅, v2 ← ∅
20: for 0 ≤ i < 64 do
21: v1 ← (v1|PadZeros(z

(1)
i , 27 − 1)) . z

(1)
i : i-th entry of z(1)

22: u← (u|PadZeros(Ut
i, 2

7 − 10)) . Ui : i-th column of U
23: v2 ← (v2|PadZeros(z(2), 27 − 10))
24: end for
25: ct.z1 ← MK-CKKS.Enc(v1;bM ,a)
26: ct.U ← MK-CKKS.Enc(u;bM ,a)
27: ct.z2 ← MK-CKKS.Enc(v2;bM ,a)

Algorithm 7 AllSum(ct, ψ, α)

Input: ct, input ciphertext, the unit initial amount by which the ciphertext
shifts ψ, the number of the repeated doubling α > 1

Output: ctout
1: ctout ← ct
2: for i = 0, 1, . . . , logα− 1 do
3: ctout ← MKHE.Add(ctout, MKHE.Rot(ctout;ψ · 2i))
4: end for



Algorithm 8 Homomorphic evaluation of CNN

Input: ct.X, {ct.Yl}0≤l<4, {ct.Wk}0≤k<8, ct.z1, ct.U , ct.z2.
Output: ctout.

[Convolutional layer]
1: ct0 ← MK-CKKS.Mult(ct.X, ct.Y0) . Simple convolutions
2: for 1 ≤ l < 4 do
3: ct.Xl ← MK-CKKS.Rot(ct.X; 14i+ j) . i = bl/2c, j = (l%2)
4: ct← MK-CKKS.Mult(ct.Xl, ct.Yl)
5: ct0 ← MK-CKKS.Add(ct0, ct)
6: end for
7: ct0 ← MK-CKKS.Rescale(ct0)
8: ct0 ← AllSum(ct0, 1024, 4) . Sum over multiple channels

[1st square layer]
9: ct1 ← MK-CKKS.Rescale(MK-CKKS.Mult(ct0, ct0))

[FC-1 layer]
10: ct2 ← MK-CKKS.Mult(ct1, ct.W0)
11: for 1 ≤ l < 8 do
12: ct← MK-CKKS.Rot(ct1; 27 · l)
13: ct← MK-CKKS.Mult(ct, ct.Wl)
14: ct2 ← MK-CKKS.Add(ct2, ct)
15: end for
16: ct2 ← MK-CKKS.Rescale(ct2)
17: ct2 ← AllSum(ct2, 1, 64)
18: u← PadZeros((1), 127) ∈ R128

19: u← (u|u| . . . |u) ∈ R8192

20: ct2 ← MK-CKKS.SMult(ct2,u) . Multiplicative masking
21: ct2 ← MK-CKKS.Rescale(ct2)
22: ct2 ← MK-CKKS.Add(ct2, ct.z1)

[2nd square layer]
23: ct3 ← MK-CKKS.Rescale(MK-CKKS.Mult(ct2, ct2))

[FC-2 layer]
24: ct4 ← AllSum(ct3,−1, 16)
25: ct4 ← MK-CKKS.Rescale(MK-CKKS.Mult(ct4, ct.U))
26: ct4 ← AllSum(ct4, 128, 64)
27: ctout ← MK-CKKS.Add(ct4, ct.z2)


