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Abstract

Background: Learning a model without accessing raw data has been an intriguing idea to security and machine learning
researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain
analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for
secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can
only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.
Objective: The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).
Methods: We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the
least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing
and parallelization techniques.
Results: Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and
memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically
encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.
Conclusions: We present the first homomorphically encrypted logistic regression outsourcing model based on the critical
observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
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Introduction

Biomedical data are highly sensitive and often contain important
personal information about individuals. In the United States,
health care data sharing is protected by the Health Insurance
Portability and Accountability Act [1], whereas biomedical
research practitioners are covered under federal regulation
governing the “Common Rule,” a federal policy that protects
people who volunteer for federally funded research studies [2].

These policies set high standards on the protection of biomedical
data and violations will lead to financial penalties and lost
reputation. On the other hand, cloud computing, which
significantly simplifies information technology environments,
is the trend for data management and analysis. According to a
recent study by Microsoft, nearly a third of organizations work
with four or more cloud vendors [3]. The privacy concern,
therefore, becomes a major hurdle for medical institutions to
outsource data and computation to the commercial cloud. It is
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imperative to develop advanced mechanisms to assure the
confidentiality of data to support secure analysis in the cloud
environment.

An intuitive solution is to train a model without accessing the
data and only obtain the estimated model parameters in a global
manner. Assuming summary statistics can be shared, this can
be done in a joint manner and we have developed the “grid
logistic regression” [4-6] to show the feasibility of estimating
the global parameters from distributed sources (eg, by only
exchanging gradients and Hessian matrices). However, there
are still vulnerabilities in sharing even the summary statistics;
for example, the difference in mean age between a cohort of n
patients and another cohort of n –1 overlapped patients can
reveal the actual age of a single patient.

Many medical decision-making systems rely on the logistic
regression model [7-9]. However, to use them appropriately,
we need to provide a sufficient sample, which requires a sample
size calculation. Peduzzi et al [10] suggested a simple guideline
for a minimum number of cases to include in the study: let p be
the smallest of the proportions of negative or positive cases in
the population and k the number of covariates (the number of
independent variables), then the minimum number of cases to
include is N = 10 · k / p. For example, one has three covariates
to be included in the model and the proportion of positive cases
in the population is 0.2 (20%). The minimum number of cases
required is 10 · 3 / 0.20 = 150. For rare disease studies with
many variables, it is even harder to collect enough samples from
a single institution to meet this goal. We need to circumvent
the privacy barriers to feed the model with more samples from
different sources. As shown in Figure 1, homomorphic
encryption techniques can support typical secure computations
(eg, secure outsourcing and secure multiparty computation) and
mitigate the privacy risks by allowing all computation to be
done in the encrypted format.

Graepel et al [11] shed light on machine learning with
homomorphically encrypted data. The article discussed scenarios
that are appropriate and inappropriate to exercise machine
learning with homomorphic encryption techniques. The authors
provided two examples: linear means classifier and linear
discriminative analysis, which can be achieved by using
low-degree polynomials in homomorphic encryption. However,
these simple parametric models do not handle complex datasets
well and they do not represent the mainstream machine learning
technologies used in biomedical research [12,13]. Additional
work was carried out by Bos et al [14] to demonstrate the
feasibility of making a prediction on encrypted medical data in
Microsoft’s Azure cloud. However, instead of learning from
the data, this model only makes predictions using learned logistic
regression models in a privacy-preserving manner. Similarly,
a more recent work called CryptoNets applied trained neural
networks to encrypted data only for the evaluation purpose [15].
Related works are summarized in Table 1.

In the current literature, most similar to our work are Aono et
al [16] and Mohassel et al [17], but they are also very different
from ours in assumptions and methods. Aono et al introduced
an approximation to convert the likelihood function into a
low-degree polynomial and used an additive homomorphic
encryption to aggregate some intermediary statistics [16].
However, their scenario relies on the client to decrypt these
intermediary statistics so that it can minimize the parameters
locally. This is not a completely secure outsourcing scenario as
ours, which works on encrypted data to obtain encrypted
parameters without any client involvement. Mohassel et al
developed secure two-party computation protocols to conduct
the stochastic gradient descent for solving logistic regression
and neural network problems [17].

Figure 1. Two secure models: (a) secure storage and computation outsourcing and (b) secure model outsourcing.

Table 1. Research works in secure analysis.

TechniquesProblemReference

Homomorphic encryptionLinear means classifier/discriminative analysisGraepel et al [11]

Homomorphic encryptionPrediction using learned logistic regression modelBos et al [14]

Homomorphic encryptionPrediction using learned neural networksDowlin et al [15]

Additive homomorphic encryptionLogistic regressionAono et al [16]

Multiparty computationLogistic regressionMohassel et al [17]

Homomorphic encryptionLogistic regressionThis work
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This method takes a completely different approach (garbled
circuit and secret sharing vs homomorphic encryption) and the
assumptions are widely different from ours (secure multiparty
computation vs secure outsourcing). There are several prominent
challenges related to scalability and efficiency. Traditional
methods cannot handle many iterations of multiplications, which
leads to a deep circuit and exponential growth in computational
cost and storage size of the ciphertext. On the other hand, it is
a nontrivial task to approximate certain critical functions in
machine learning models using only low-degree polynomials.
Naive approximation may lead to big errors and makes the
solutions intractable. Our framework proposes novel methods
to handle these challenges and makes it possible to learn a
logistic regression model on encrypted data based completely
on homomorphic encryption.

Methods

Logistic Regression
Logistic regression is a widely used learning model in
biomedicine [13]. Data for supervised learning consist of pairs
(xi, yi) of a vector of covariates xi = (xi 1,..., xi d) and a class label
yi for i = 1,..., n. We assume that yi = 1 / –1 for binary
classification. The model looks like:

for the sigmoid function σ(x) = 1 / [1 + exp(–x)] where β = (β0,
β1,..., βd) are the model parameters to be estimated. Training
methods of logistic regression aim to find the optimal parameters
β, which minimizes the cost (negative log-likelihood)

Homomorphic Encryption for Approximate Arithmetic
Homomorphic encryption is an encryption technique that allows
computations on ciphertexts and generates encrypted results
that match those of plaintext computation. We adopted a special
cryptosystem developed by Cheon et al [18], which supports
an approximate arithmetic of encrypted messages. Different
from existing methods, this cryptosystem trades precision for
efficiency so that the size of parameters does not grow too large
(thus computationally feasible). Interested readers can refer to
Multimedia Appendix 1 for more details. The cryptosystem
supports key generation, encryption, decryption, addition, and
multiplication operations. It also supports message packing and
rotation, which are important to parallelize similar tasks.

A unique property of this cryptosystem is the following rescaling
procedure, which plays an important role in controlling the
magnitude of messages and, therefore, achieving the efficiency
of approximate computation. The rescaling procedure coverts
an encryption ct of a message m with a ciphertext modulus q
into an encryption ct' of r-1 ⋅ m under the same secret key but a
smaller modulus q' = r-1 ⋅ q, in which r is a scaling factor. We
denote the output ciphertext by RS(ct; r). It enables us to round
the message and reduce the size of significand by removing
some inaccurate least significant bits as in the floating-point
arithmetic. Informally, we will say that the input ciphertext

modulus is reduced by log r bits after this procedure where the
binary logarithm will be simply denoted by log(⋅).

Least Squares Approximation of the Sigmoid Function
Unlike linear regression, logistic regression does not have a
closed-form solution in most cases. As a result, we need to use
nonlinear optimization methods to find the maximum likelihood
estimators of the regression parameters. The Newton-Raphson
[19] and the gradient descent [20] are the most commonly used
methods for training. Because the Newton-Raphson method
involves matrix inversion and most homomorphic encryption
schemes do not naturally support division or matrix inversion,
it is difficult to evaluate the method with homomorphic
encryption schemes. On the other hand, gradient descent does
not require the division operation and, therefore, it is a better
candidate for homomorphically encrypted logistic regression.
Thus, we choose the gradient descent algorithm as the training
method for logistic regression.

Let (xi, yi) be the supervised learning samples for i = 1,..., n. If
we write zi = yi ⋅ (1, xi), the cost function for logistic regression
is defined by:

Its gradient with respect to β is computed by
–1 / nΣ1≤i≤nσ (–zi

Tβ) ⋅ zi. To find a local minimum point, the
gradient descent method updates the regression parameters using
the following formula until β converges:

where α is the learning rate.

Although the gradient descent method seems better suited than
other training methods for homomorphic evaluation, some
technical problems remain for implementation. In the preceding
update formula, the sigmoid function is the biggest obstacle for
evaluation, since the existing homomorphic encryption schemes
only allow evaluation of polynomial functions. Hence, the
Taylor polynomials Td(x) = Σ0≤k≤d(f

(k)(0) / k!) ⋅ xk have been
commonly used for approximation of the sigmoid function
[14,17]:

However, we observed the input values zi
Tβ of the sigmoid

function during iterations on real-world datasets and concluded
that the Taylor polynomial T9(x) of degree 9 is still not enough
to obtain the desired accuracy (see Figure 2a). The size of error
grows rapidly as | x | increases. For instance, we have
T9(4) ≈ 4.44, T9(6) ≈ 31.23, and T9(8) ≈ 138.12. In addition, we
have to use a higher degree Taylor polynomial to guarantee the
accuracy of regression, but it requires too many homomorphic
multiplications to be practically implemented. In summary, the
Taylor polynomial is not a good candidate for approximation
because it is a local approximation near a certain point.
Therefore, we adopted a global approximation method that
minimizes the mean squared error (MSE). For an integrable
function f, its mean square over an interval I is defined by
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(1 / | I |) ∫I f (x)2dx, where | I | denotes the length of I. The least
squares method aims to find a polynomial g(x) of degree d which
minimizes the MSE (1 / | I |) ∫I (f(x) – g(x))2dx. The least squares
approximation has a closed formula that can be efficiently
calculated using linear algebra.

In our implementation, we used the degree 3 and 7 least squares
approximations of the sigmoid function over the interval [–8,8],
which contains all of the input values (– zi

Tβ) during iterations.
The least squares polynomials are computed as:

where the coefficients vectors are (a1, a3) ≈ (1.20096,–0.81562)
and (b1, b3, b5, b7) ≈ (1.73496,–4.19407, 5.43402,–2.50739).
The degree 3 least squares approximation requires a smaller
depth for evaluation, whereas the degree 7 polynomial has a
better precision (see Figure 2b).

Homomorphic Evaluation of Gradient Descent
Algorithm
We will describe how to encode data and explain how to analyze
logistic regression on encrypted data. To speed up the
computation, we will use the packing mechanism to batch n
slots and perform n evaluations in parallel, where n is the
number of training data samples.

We start with a useful aggregation operation across plaintext
slots from the literature [21-23]. Specifically, given a ciphertext
representing a plaintext vector (m1, m2,..., mk), we introduce an
algorithm (denoted by AllSum) that generates a ciphertext

representing a value of Σ1≤i≤kmi in each plaintext slot. Assume
that k is chosen as a power-of-two integer. The cyclic rotation
by one unit produces a ciphertext encrypting the plaintext vector
(m2,..., mk, m1). Then an encryption of the vector
(m1 + m2, m2 + m3,..., mk + m1) is obtained by adding the original
ciphertext. We repeatedly apply this method (log k – 1) times
with a rotation by a power of two, which generates the desired
ciphertext; that is, every plaintext slot contains the same value
of Σ1≤i≤kmi. The AllSum algorithm is explicitly described in
Textbox 1.

Let us assume that we are given n training data samples zi with
(d +1) features. As mentioned before, our goal is to securely
evaluate the following arithmetic circuit:

where g(x) denotes the approximating polynomial of the sigmoid
function chosen in the previous subsection. We set the initial β
parameters as the zero vector for simplicity.

Because our cryptosystem only supports integer computation,
all the elements are scaled by a factor of an integer p and then
converted into the nearest integers for quantization. The client
first receives the ciphertexts encrypting the vector (p · zi) from
n users, and then compromises them to obtain (d + 1) ciphertexts
ct.zi for all j = 0,1,..., d, each of which encrypts the vector
p ⋅ (z1j,..., znj) of the j-th attributes using batching technique. If
n is not a power of two, the plaintext slots are zero padded so
that the number of slots divides N / 2. Finally, these resulting
ciphertexts (ct.z0,..., ct.zd) are sent to the server for the
computation of gradient descent.

Figure 2. Graphs of (a) sigmoid function and Taylor polynomials and (b) sigmoid function and least squares approximations.

Textbox 1. The AllSum algorithm.

0: Inputs: ciphertext ct encrypting plaintext vector (m1, m2,..., mk).

1: For i = 0,1,..., log k –1 do

2: Compute ct ←Add(ct, Rot(ct;2i))

3: end for

4: Outputs: ciphertext ct encrypting Σ1≤ i≤kmi in each plaintext slot
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Textbox 2. Secure logistic regression algorithm.

0: Inputs: Ciphertexts { ct.zj}0≤j≤d, a polynomial g(x), a number of iterations IterNum

1: For j = 0,1,…, d do

2: ct.betaj ←0

3: end for

4: For k = 1,2,…, IterNum do

5: ct.ip ←RS(∑0≤ j≤dMult(ct.betaj, ct.zj); p)

6: ct.g ←PolyEval(– ct.ip, ⌊ p · g(x)⌉)

7: For j = 0,1,…, d do

8: ct.gradj ←RS(Mult(ct.g, ct.zj); p)

9: ct.gradj ←RS(AllSum(ct.gradj); ⌊n / α⌉)

10: ct.betaj ←Add(ct.betaj, ct.gradj)

11: end for

12: end for

13: Outputs: Ciphertexts { ct.beta> j}0≤ j≤d

The public server generates the initial ciphertexts
(ct.beta0,..., ct.betad) as zero polynomials in Rq (the residue ring
of R = Z[X] / (XN + 1) modulo an integer q). At each iteration,
it performs a homomorphic multiplication of ciphertexts ct.betaj
and ct.zj, and outputs a ciphertext encrypting the plaintext vector
p2 ⋅ (z1j

Tβj,..., znj
Tβj) for all j = 0,..., d. Then it aggregates the

ciphertexts and performs the rescaling operation with a scaling
factor of p to manipulate the size of plaintext, returning a
ciphertext ct.ip that represents a plaintext vector approximating
to p ⋅ (z1

Tβ,..., zn
Tβ).

For the evaluation of the least squares polynomial g(x) at (–zi
Tβ),

we adapt the polynomial evaluation algorithm, denoted by
PolyEval(⋅), suggested in [18]. Each coefficient of the
polynomial should be scaled by a factor of p to be transformed
into an integral polynomial. The output ciphertext ct.g contains
p ⋅ g(–zi

Tβ) in the i-th slot. Finally, the server performs a
homomorphic multiplication of the ciphertexts ct.g and ct.zj,
AllSum procedure, and rescaling by a factor of ⌊ n / α ⌉ (nearest
integer to n / α). These procedures generate ciphertexts
ct.grad0,..., ct.gradd corresponding to the entries of the gradient
vector weighted by the learning rate and the sample size. Then
it only needs to perform an addition with the model parameters
β and the gradient vector over encryption, which yields a new
ciphertext ct.betaj that encrypts an approximation of the j-th
scaled value of the gradient update in Equation 7. Our secure
logistic regression algorithm is described in Textbox 2.

Our solution can compute the gradient descent algorithm
securely; however, its direct implementation is not efficient and
requires  a  tota l  c ipher text  modulus  of
log p ⋅ (⌈log deg(g)⌉ + 3) + ⌈log (n / α)⌉ bits at each iteration,
where ⌈ x ⌉ denotes the smallest integer that is not less than x.
We further optimized this algorithm by manipulating the
arithmetic circuit for the update term (α / n)Σ1≤i≤ng(–zi

Tβ) ⋅ zi

and could reduce the ciphertext modulus to
3 ⋅ log p + ⌈log (n / 4α)⌉ bits or 4 · log p + ⌈log (n / 4α)⌉ bits
when g(x) = g3(x) or g(x) = g7(x), respectively. Interested readers
can refer to Multimedia Appendix 2 for more details.

Results

Implementation Details
All experiments were performed on an Intel Xeon running at
2.3 GHz processor with 16 cores and 64 GB of RAM, which is
an m4.4xlarge AWS EC2 instance. In our implementation, we
used a variant of a fixed-point homomorphic encryption scheme
of Cheon et al [18,24] with C++-based Shoup’s Number Theory
Library [25]. Our implementation is publicly available at GitHub
[26].

Datasets
We developed our approximation algorithm using the
Myocardial Infarction dataset from Edinburgh [27]. The others
were obtained from Low Birth Weight Study, Nhanes III,
Prostate Cancer Study, and Umaru Impact Study datasets
[28-31]. All these datasets have a single binary outcome
variable, which can be readily used to train binary classifiers
such as logistic regression. Table 2 illustrates the datasets with
the number of observations (rows) and the number of features
(columns), respectively. We utilized five-fold cross-validation
that randomly partitions the original datasets into five folds with
the approximately equal size; we used four subsets for learning
(with the learning rate α ≈ 1) and one subset for testing the
trained model..

Parameters and Timings for the Homomorphic
Encryption Scheme
We assumed that all inputs had log p = 28 bits of precision and
set the bit length of the output ciphertext modulus as
log q0 = log p + 10. As discussed previously, when evaluating

JMIR Med Inform 2018 | vol. 6 | iss. 2 | e19 | p.5http://medinform.jmir.org/2018/2/e19/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the gradient descent algorithm with g(x) = g7(x), a ciphertext
modulus is reduced more than g(x) = g3(x) at each iteration.
Thus, we set the number of iterations as IterNum = 25 (resp
IterNum = 20) when g(x) = g3(x) (resp. g(x) = g7(x)) to take an
initial ciphertext modulus of similar size. We could actually
obtain the approximate bit length of fresh ciphertext modulus
log q around 2204 to 2406. The parameter set provides 80 bits
of security (see Multimedia Appendix 3 for more details).
Because all the computations were performed on encrypted
data, the security against a semi-honest adversary follows from
the semantic security of the underlying homomorphic encryption
scheme. For this setting, the size of the public key and a freshly
encrypted ciphertext is 75 MB. The key generation takes
approximately 56 to 58 seconds and the encryption takes
approximately 1.1 to 1.3 seconds.

In Table 3, we evaluated our models performance based on
average running time (encryption, evaluation, and decryption)
and storage (encrypted dataset size) in each fold.

We used a popular metric, area under the receiver operating
characteristic curve (AUC), to measure the model’s classification

performance when the true positive rate was plotted against the
false positive rate at various thresholds. Figure 3 plots the
average AUC values from five-fold cross-validation for datasets.
The program was implemented by MATLAB 2017a.

We can converge to the optimum within a small number of
iterations (20~25), which makes it very promising to train a
homomorphically encrypted logistic regression model and
mitigate the privacy concerns.

In Table 4, we compared the produced models using our
encrypted approach and unencrypted logistic regression. In the
unencrypted cases, we used the original sigmoid function on
the same training dataset with the same iteration numbers as the
encrypted cases. For discrimination, we calculated the accuracy
(%), which is defined by the percentage of the correct
predictions on the testing dataset. For a more accurate
comparison, we used the MSE that measures the average of the
squares of the errors. We could also normalize it by dividing
by the average of the squares of the (unencrypted) model
parameters, called a normalized mean squared error (NMSE).

Table 2. Description of datasets.

Number of featuresNumber of observationsDataset

101253Edinburgh Myocardial Infarction

10189Low Birth Weight Study

1615,649Nhanes III

10379Prostate Cancer Study

9575Umaru Impact Study

Table 3. Experiment results of our homomorphic encryption-based logistic regression algorithm

Storage (GB)Decryption (sec)Evaluation (min)Encryption (sec)Dataset and degree of g(x)

Edinburgh Myocardial Infarction

0.696.3131123

0.716.0116127

Low Birth Weight Study

0.674.9101113

0.704.5100117

Nhanes III

1.1512265213

1.1713240217

Prostate Cancer Study

0.684.4119113

0.704.5100117

Umaru Impact Study

0.615.1109103

0.634.394107
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Figure 3. Average AUC of encrypted logistic regression. FPR: false positive rate; TPR: true positive rate.
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Table 4. Comparison of encrypted/unencrypted logistic regression. AUC: area under the receiver operating characteristic curve. MSE: mean squared
error; NMSE: normalized mean squared error.

NMSEMSEUnencrypted logistic regressionOur homomorphic encryption-based
logistic regression

Degree of g(x)Dataset and iteration number

AUCAccuracyAUCAccuracy

Edinburgh Myocardial Infarction

0.02610.02590.95688.43%0.95686.03%325

0.00120.00070.95486.19%0.95486.19%720

Low Birth Weight Study

0.06980.00830.66868.25%0.66569.30%325

0.00490.00030.67869.29%0.67869.29%720

Nhanes III

0.02690.00330.75179.26%0.73279.23%325

0.00340.00020.73779.23%0.73779.23%720

Prostate Cancer Study

0.04490.00850.75068.86%0.74268.85%325

0.00180.00020.75269.12%0.75069.12%720

Umaru Impact Study

0.08290.00740.58774.43%0.58574.43%325

0.00770.00040.61974.43%0.61775.43%720

Discussion

Principal Findings
Our implementation shows that the evaluation of the gradient
descent algorithm with the degree 7 least squares polynomial
yields better accuracy and AUC than degree 3. It is quite close
to the unencrypted result of logistic regression using the original
sigmoid function with the same number of iterations; for
example, on the training model of Edinburgh dataset, we could
obtain the model parameters β as follows:

(–1.7086, 0.0768, 0.1119, 0.3209, 1.2033,
0.3684, 0.9756, 0.2020, 0.2259, –0.1641),

which can reach 86.19% accuracy and 0.954 AUC on the testing
dataset. When using the sigmoid function on the same training
dataset, the model parameters β are

(–1.6308, 0.0776, 0.1097, 0.3155, 1.1809,
0.3651, 0.9599, 0.2083, 0.2298, –0.1490),

which give the same accuracy and AUC. On the other hand, as
shown in Table 4, the MSE and NMSE values of degree 7 are
closer to zero which inspires us that the polynomial
approximation of that degree is fairly accurate for logistic
regression.

One of the inherent properties of our underlying homomorphic
encryption scheme is that the inserted errors for security may
increase after some homomorphic operations. Hence, the size
of error and the precision loss should be discussed carefully to
guarantee the correctness of the resulting value. On the other
hand, the gradient descent method has a property of negative
feedback on computational error. Because we use the gradient

at the current weight vector β to move it closer to the optimal
point of minimized cost, the effect of noise disappears after
some iterations. Therefore, there is no need to manage the
precision of messages to confirm the correctness of resulting
value because the noises are not amplified during evaluation.
In our experimentation on the Edinburgh dataset, for instance,
the difference between the model parameters obtained from
encrypted/unencrypted evaluations was less than 2-11. This
means that we can precisely compute at least most significant
11 bits after the radix point of the model parameters and this
approximate vector is accurate enough to achieve a good
performance in testing data samples.

Limitations
There are still a number of limitations in the application of our
evaluation model to an arbitrary dataset. First, the use of
homomorphic encryption yields the overheads in computation
and storage. The size of the dataset should be limited for
practical evaluation, but this is not a big problem because there
have been significant improvements in the existing
homomorphic encryption schemes. The development of
homomorphic encryption technology will achieve much better
practical performance in our protocol.

Another issue arises from the polynomial approximation. We
suggested the least squares method on a certain interval [–8,8],
but the precision of the result can increase by managing
approximation error from wider range inputs. Finally, our model
is based on fixed hyperparameters that should be decided before
starting of the evaluation. It would be highly beneficial if we
could detect convergence of the loss function in the training
process and support early stop instead.
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Conclusions
This paper presents the first effective methodology to evaluate
the learning phase of logistic regression using the gradient
descent method based on homomorphic encryption. We have

demonstrated the capability of our model across the experiments
with different biological datasets. In particular, our solution can
be applied to a large-scale dataset, which shows the feasibility
of our approach.
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AUC: area under the curve
MSE: mean squared error
NMSE: normalized mean squared error
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