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Abstract. The Ring Learning with Errors (RLWE) problem over a cyclotomic ring has been
the most widely used hardness assumption for the construction of practical homomorphic
encryption schemes. However, this restricted choice of a base ring may cause a waste in terms
of plaintext space usage. For example, an approximate homomorphic encryption scheme of
Cheon et al. (ASIACRYPT 2017) is able to store a complex number in each of the plaintext
slots since its canonical embedding of a cyclotomic field has a complex image. The imaginary
part of a plaintext is not underutilized at all when the computation is performed over the real
numbers, which is required in most of the real-world applications such as machine learning.
In this paper, we are proposing a new homomorphic encryption scheme which supports arith-
metic over the real numbers. Our scheme is based on RLWE over a subring of a cyclotomic
ring called conjugate-invariant ring. We show that this problem is no easier than a stan-
dard lattice problem over ideal lattices by the reduction of Peikert et al. (STOC 2017). Our
scheme allows real numbers to be packed in a ciphertext without any waste of a plaintext
space and consequently we can encrypt twice as many plaintext slots as the previous scheme
while maintaining the same security level, storage, and computational costs.
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1 Introduction

Learning with Errors (LWE) is a computational problem which asks to distinguish a sys-
tem of linear equations with small errors from a uniformly random one. After Regev [35]
firstly introduced the LWE problem, it has been one of the standard assumptions for the
construction of cryptographic primitives due to its security and versatility. Lyubashevsky,
Peikert, and Regev [32] proposed a variant of LWE called the Ring Learning with Errors
(RLWE) problem. They showed that the (decisional) RLWE problem over a cyclotomic
ring can be reduced from the Shortest Independent Vectors Problem (SIVP) over ideal
lattices.

Homomorphic Encryption (HE) is a cryptographic scheme which enables arithmetic
operations on encrypted data without decryption. This technology is a promising solu-
tion which can prevent leakage of sensitive personal information such as financial, med-
ical and genomic data. A number of HE schemes [18, 8, 23, 7, 21, 5, 24, 19, 16, 15, 13]
have been suggested following Gentry’s blueprint [22]. Currently, most of the practical HE
schemes [23, 21, 15, 13] rely their security on the hardness of RLWE over a cyclotomic
ring. For years, the choice of base ring was restricted because nothing was known about
the hardness of (decisional) RLWE over non-cyclotomic rings.



Cheon et al. [13] proposed a HE scheme (HEAAN) that supports the arithmetic of ap-
proximate numbers. In addition to homomorphic addition and multiplication, the HEAAN
scheme can compute the rounding operation (extraction of the most significant bits) ef-
ficiently, which has traditionally been considered a challenging subject on HE system.
Because of this functionality, HEAAN has showed a remarkable performance in many of
the applications [30, 29, 28, 17, 6, 14], requiring computations of real numbers.

Motivation. The HEAAN scheme exploits a variant of the (complex) canonical embedding
over a cyclotomic field to pack a number of plaintext values in a single ciphertext. Hence,
each of the plaintext slots could store a complex number. We point out that this complex
encoding method has some problems in terms of efficiency and precision. Since most of
the real-world applications (e.g. machine learning) require computations over purely real
numbers, the imaginary part of a plaintext of HEAAN is underutilized. It can be viewed
as a waste of a plaintext space. In addition, homomorphic operations of HEAAN, such
as multiplication and rounding, generate additional complex errors which can reduce the
computational accuracy.

Peikert et al. [34] recently showed that the RLWE problem over the ring of integers of
an arbitrary number field is no easier than SIVP over ideal lattices of the same number
field. So we aimed to find a new number field and construct a HE scheme over its ring of
integers, which utilizes a fully packed plaintext space over real numbers to overcome the
existing problem.

Our Contribution. We consider the maximal real subfield of a cyclotomic field as a
base number field and define the RLWE problem over its ring of integers which is called
the conjugate-invariant ring. We first show that the conjugate-invariant ring is the set of
real numbers in the ring of integers of a cyclotomic field and adapt the reduction of [34]
to guarantee the hardness of RLWE problem over the conjugate-invariant ring.

Based on this problem, we construct a new HE scheme that supports approximate
arithmetic of real numbers. Our scheme can store a real number in each of the plaintext slots
since the image of conjugate-invariant ring with respect to the canonical embedding belongs
to the set of real vectors. We also propose a specialized Fast Fourier Transformation (FFT)
algorithm over the residue ring of conjugate-invariant ring to minimize the complexity of
arithmetic operations.

As a result, our HE scheme can encrypt twice as many plaintext slots as the original
HEAAN scheme while maintaining the same security level and computational costs, i.e., the
amortized complexity per slot is reduced by half.

Technical Details. Let m be a power-of-two integer, n = φ(m) = m/2 and Φm(X) =
Xn + 1. Let ζ = exp(2πi/m) be an m-th primitive root of unity and let F = Q(ξ) be the
maximal real subfield of the cyclotomic field K = Q(ζ) for ξ = ζ + ζ−1. Then the ring of
integers of F = Q(ξ) is R = Z[ξ], and we call this ring the conjugate-invariant ring. By
adapting the reduction in [34], we can show that RLWE over the ring R is no easier than
SIVP over ideal lattices in K. This hardness proof reasonably motivates us to exploit R
as a base ring for the construction of a HE scheme. We also give a cryptanalysis of RLWE
over the conjugate-invariant ring R = {a(X) ∈ Z[X]/(Xn+1) : a(X) = a(X−1)} to study
the concrete security level. We consider all known attacks on RLWE and conclude that
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this problem requires the same attack complexity as the ordinary (n/2)-dimensional LWE
problem.

The plaintext encoding technique of HEAAN utilizes the canonical embedding map
for the packing of plaintexts in a single ciphertext. Similarly, we consider the canonical
embedding map τ : F → Cn/2 of the number field F . Since ξ and its conjugate elements
are real, the image of F with respect to its canonical embedding actually lies in Rn/2.
Therefore, we can successfully define a ring homomorphism from F into the vector of
purely real numbers, and make the use of plaintext encoding/decoding algorithms between
R and Rn/2 based on this canonical embedding.

We construct a new HE scheme whose security relies on the hardness of RLWE over
R. We first propose a vector representation for the elements F , which is efficient for the
rounding operation into R and the modulo operation of the residue ring Rq = R/qR. Then,
we describe a HE scheme over the real numbers, which provides approximate arithmetic
operations and an approximate rounding operation.

We also explain how to represent the elements of Rq and perform the arithmetic op-
erations between them. We present a specialized Fast Fourier Transform (FFT) algorithm
for an efficient Number Theoretic Transform (NTT) on the residue ring Rq and fast mul-
tiplication between ring elements. This optimization technique constructs a simply com-
putable ring isomorphism from Rq to Zq[X]/(Xn/2 − 1), so the ordinary NTT conversion
on Zq[X]/(Xn/2 − 1) can be applied to Rq whose dimension is one quarter of that of a
naive method.

In conclusion, our approximate HE scheme over R can encrypt (n/2) plaintext slots
in a single ciphertext, twice as many plaintext slots compared to (n/4) of the ordinary
HEAAN scheme over Zq[X]/(Xn/2 + 1), while keeping the same concrete security level,
storage, and computational costs.

Related Works. Arita and Handa [3] proposed a HE scheme based on RLWE over
the decomposition ring, which is a subring of cyclotomic ring. Their subring technique
is applied to HElib [26]: they consider the plaintext space as Zp ⊕ · · · ⊕ Zp, which is a
subring of the plaintext space GF(pd) ⊕ · · · ⊕ GF(pd) of HElib for some integers p and
d, where GF(pd) denotes the Galois field of the cardinality pd. They claimed that RLWE
over the decomposition ring is at least as hard as its search version. However, there is no
known reduction from lattice problems over ideal lattices to the search version, since the
decomposition ring is not known to be a ring of integers of some number field so far. In
contrary, RLWE over the conjugate-invariant ring which we desired in this paper has a
reduction from SIVP over ideal lattices.

Road-map. In section 2, we present notations of our paper and some backgrounds for
RLWE. In section 3, we define RLWE over the conjugate-invariant ring and discuss about
its hardness. In section 4, we present our new approximate HE scheme constructed over
the conjugate-invariant ring, describe encoding/decoding algorithms for real numbers, and
propose a specialized FFT algorithm for the desired ring. In last section, we give a summary
on our approximate HE scheme compared to original HEAAN.
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2 Background

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For an integer m ≥ 2, Zm := Z/mZ,
and Z×m is the multiplicative group of units in Zm. For a ring R, its residue ring R/qR
modular an integer q is denoted by Rq. For a real number r, bre denotes the nearest
integer to r, rounding upwards in case of a tie. For a vector u of (complex) numbers, ‖u‖2
(resp. ‖u‖∞) denotes the `2-norm (resp. `∞-norm) of u. For an element a of a number field
K, ‖a‖can2 (resp. ‖a‖can∞ ) denotes the `2-norm (resp. `∞-norm) of the image vector of a via
the canonical embedding map. For vectors a and b of the same dimension, a�b denotes the
component-wise multiplication of a and b. We denote by φ(·) the Euler’s totient function
and Φm(X) the m-th cyclotomic polynomial. For a complex number z ∈ C, z denotes the
complex conjugation of z.

2.2 Number Fields and Ideal Lattices

For any number field K, there exists an element ζ of K such that K = Q(ζ). Hence K
is isomorphic to Q[X]/(f(X)) for the minimal polynomial f(X) of ζ over Q. The degree
n of f(X) equals to the extension degree [K : Q]. There are exactly n injective ring
homomorphisms {σj}1≤j≤n from K to C. The canonical embedding is defined as the n-
tuple of these embeddings as follows:

σ : K → Cn

a 7→ (σj(a))1≤j≤n.

Let s1 be the number of real embeddings of K, then n = s1 + 2s2 for some non-negative
integer s2. Without loss of generality, let σ1, . . . , σs1 be real embeddings of K. Then the
image of σ lies in the space H := {(x1, ..., xn) ∈ Cn : xs1+s2+j = xs1+j , 1 ≤ j ≤ s2}.
Let {ej}1≤j≤n be a canonical basis of Cn. Let hj = ej for 1 ≤ j ≤ s1, hs1+j = (es1+j +
es1+s2+j)/

√
2 and hs1+s2+j = (es1+j − es1+s2+j)/

√
−2 for 1 ≤ j ≤ s2. Then, {hj}1≤j≤n

forms an orthogonal R-basis of H.
An element of K is called an algebraic integer if its minimal polynomial over Q has

integral coefficients. The set of all algebraic integers, denoted by OK , is called the ring of
integers of K. A fractional ideal I of K is OK-submodule of K such that there exists a
non-zero element r ∈ OK which satisfies rI ⊆ OK . If I ⊆ OK , then we call I an (integral)
ideal. The image σ(I) of a fractional ideal I via the canonical embedding forms a lattice in
Cn, and we call it an ideal lattice generated by I. The dual of I in K is a fractional ideal
in K defined as I∨ := {a ∈ K : Tr(aI) ⊆ Z}.

For 1 ≤ k ≤ n, the k-th successive minima of the lattice L, denoted by λi(L), is the
minimum value of r > 0 such that L has k linearly independent vectors of length at most
r. If L is an ideal lattice σ(I) for a fractional ideal I ∈ K, we simply denote by λk(I). The
SIVP over ideal lattices in K is defined as follow.

Definition 1. (SIVP over ideal lattices) For a number field K of degree n and an approx-
imation factor γ ≥ 1, the K-SIVPγ problem is: given a fractional ideal I of K, output n
linearly independently vectors in the ideal lattice σ(I) of length at most γ · λn(I).
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2.3 Ring Learning with Errors

For positive integers n and q, let R be the ring of integers of a number field K, Rq = R/qR
and KR = K ⊗Q R. Let χkey and χerr be distributions over R∨ and KR, respectively. For
s ∈ R∨q , AR-LWE

q,χerr
(s) is a distribution which draws a ← Rq and e ← χerr, and output the

pair (a, a · s+ e) in Rq ×KR/qR
∨. The (decisional) RLWE problem is defined as follows.

Definition 2 (Ring Learning with Errors). Let n, q be positive integers, and χkey
(resp. χerr) be a distribution over R∨q (resp. KR). The RLWE problem, which is denoted
by R-LWEq,χerr(χkey), is to distinguish between the uniform distribution over Rq×KR/qR

∨

and AR-LWE
q,χerr

(s) where s← χkey.

Since KR is isomorphic to the vector space H, a distribution over H can be identified
as a distribution over KR. If χerr is a (spherical) Gaussian distribution Dαq over H with
respect to the basis {hi}1≤i≤n and χkey is the uniform distribution over R∨q , we simply
denote by R-LWEq,α.

Lyubashevsky et al. [32] proposed a polynomial-time quantum reduction from lattice
problems over ideal lattices to the RLWE problem, which holds only for the cyclotomic
fields with some special conditions on the modulus q. Peikert et al. [34] gave a new reduction
from the same problem which can be applied to an arbitrary number field and modulus.

Theorem 1 ([34, Corollary 7.3]). Let n, q be positive integers, 0 < α < 1 be a real
number such that αq = ω(1), K be an arbitrary number field of degree n and R = OK .
Then there exists a polynomial-time quantum reduction from K-SIVPγ to R-LWEq,α given
` samples for γ = max{ω(

√
n log n/α) · (n`/ log(n`))1/4,

√
2n}.

Recently, it was shown by Rosca et al. [36] that the non-dual RLWE problem, i.e., RLWE
with the distribution of the secret over Rq rather than R∨q , is at least as hard as the original
RLWE problem. In addition, the rounding technique of Peikert [33] allows us to sample er-
rors from a discrete Gaussian distribution rather than a continuous Gaussian distribution.
With these settings, an RLWE sample lies in Rq ×Rq rather than Rq ×KR/qR

∨.

3 RLWE over the Conjugate-invariant Ring

The cyclotomic rings have been the most commonly used as base rings for RLWE for
two main reasons. The ring of integers of the m-th cyclotomic field is isomorphic to
Z[X]/(Φm(X)), and its structure was particularly well suitable in the construction of cryp-
tographic schemes with the perspective of efficiency and some functionalities. In addition,
there have been no known reduction to the RLWE over a non-cyclotomic ring for years
until Peikert et al. [34] proposed a reduction from SIVP over ideal lattices to (decisional)
RLWE for arbitrary number fields recently.

In this section, we introduce a new number field which has not been exploited in the
lattice-based cryptography so far, and compute the ring of integers of the number field.
Then we study on the hardness of RLWE problem over a new ring in two ways: we give
a reduction from a standard lattice problem and study the concrete security level by
considering all known attacks.
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Fig. 1. Number fields and their rings of the integers

K = Q(ζ)

OK = Z[ζ]

F = Q(ξ)

R = Z[ξ]

Q

Z

Let m ≥ 2 be an integer and n = φ(m) for Euler’s totient function φ(·). For the m-th
primitive root of unity ζ = exp(2πi/m), the m-th cyclotomic field is defined by K = Q(ζ).
Let σ−1 be the element of Gal(K/Q) defined by σ−1 : ζ 7→ ζ−1, and G = {id, σ−1} be the
cyclic subgroup of Gal(K/Q) generated by σ−1. We denote by F = KG the G-invariant
subfield of K which is defined as F = {a ∈ K : τ(a) = a,∀τ ∈ G}. We first remark that
F = Q(ξ) for ξ = ζ + ζ−1. It is clear that Q(ξ) ⊆ F ⊆ Q(ζ) and [Q(ζ) : F ] = |G| = 2.
Since ζ is a root of X2− ξ ·X +1 ∈ Q(ξ)[X], the inequality [Q(ζ) : Q(ξ)] ≤ 2 holds and it
implies F = Q(ξ). In particular, we are interested in the set of integer coefficient elements
in Q(ξ) with respect to the Q-basis {1, ξ, ξ2, ..., ξ

n
2
−1}. We will call this set Z[ξ] as the

conjugate-invariant ring.

3.1 Reduction from SIVP

Some well-known reductions [32, 34] from standard problems over ideal lattices to RLWE
requires a condition that the base ring exploited in RLWE should be a ring of integers of
a number field. Therefore, it is crucial to study the ring of integers of a number field to
define and show the hardness of RLWE problem.

We consider the subfield F = Q(ξ) of K = Q(ζ) as a base number field, and compute
its ring of integers R := OF in this section. Fortunately, the structure of a cyclotomic field
derives a quite simple and nice result on the conjugate-invariant ring as follows.

Lemma 1. Z[ξ] is the ring of integers of F = Q(ξ).

Proof. It is clear that Z[ξ] ⊆ OF . Since OF ⊆ OK = Z[ζ], every element a ∈ OF
is uniquely expressed as a =

∑
−n

2
≤j<n

2
aj · ζj for some integers a−n

2
, . . . , an

2
−1. From

the definition of F , we obtain σ−1(a) = a, i.e.,
∑
−n

2
≤j<n

2
ajζ

j =
∑
−n

2
<j≤n

2
a−jζ

j which

implies aj = a−j for 0 ≤ i < n
2 and a−n

2
= 0. Then, a = a0+

∑n
2
−1

j=1 ai(ζ
j+ζ−j) ∈ Z[ξ], since

ζj + ζ−j ∈ Z[ξ] for 1 ≤ j < n
2 . Therefore, OF ⊆ Z[ξ], which directly implies Z[ξ] = OF . �

From Lem. 1, we can derive a conclusion that the RLWE problem over R = Z[ξ], simply
denoted by R-LWEq,α, is at least as hard as F -SIVP from Thm. 1. We can naturally identify
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R with the ring of polynomials Z[Y ]/(g(Y )) for the minimal polynomial g(Y ) ∈ Z[Y ] of
ξ over Q via mapping a(Y ) 7→ a(ξ). However, it is more convenient to consider R as the
subring

R = {a(X) ∈ Z[X]/(Φm(X)) : a(X) = a(X−1)}

of OK = Z[X]/(Φm(X)). Note that the condition a(X) = a(X−1) corresponds to the
conjugation-invariant property. We will follow this subring perspective in the rest of paper.

3.2 Cryptanalysis

In this section, we discuss the attack complexity of RLWE over the conjugate-invariant ring.
In general, the RLWE problem does not guarantee the same security level as LWE with the
same parameter. For example, there have been several attempts to attack the RLWE (or
Poly-LWE) problem over a ring Z[X]/(f(X)) by exploiting its ring structure [20, 9, 10].
One common limitation of these attacks is that f(X) should have a root modulo q satisfying
some strong conditions.

The RLWE assumption can be viewed as a specific case of LWE (A, b = As+e) where
the random matrix A has a special algebraic structure. In the case of RLWE over a power-
of-two cyclotomic ring, an RLWE sample can be understood as a variant of n-dimensional
LWE instance where A is a random anti-circulant matrix. However, there has been no
known attack achieving a lower complexity by exploiting this property. As a result, the
current best known attacks are standard lattice attacks on the ordinary LWE problem such
as dual attack and primal attack, which are well described in [1].

Now we explain how to understand an R-LWE instance as an LWE instance with a
special structure. Let m be a power-of-two integer so that n = m/2 and Φm(X) = Xn+1.
An element of R = {a(X) ∈ Z[X]/(Xn+1) : a(X) = a(X−1)} can be uniquely expressed as
a(X) = a0+

∑n
2
−1

j=1 aj · (Xj +X−j) for some integers a0, . . . , an
2
−1. Therefore, a(X) can be

identified with the vector a = (a0, a1, ..., an
2
−1) of length (n/2). Based on this identification,

an RLWE sample over the conjugate-invariant ring (a(X), b(X) = a(X)·s(X)+e(X)) ∈ R2
q

with secret s(X) can be transformed to (A, b = As+e) ∈ Z
n
2
×n

2
q ×Z

n
2
q where A is a square

matrix of size (n/2) whose (i, j)-th component is given by

Aij =


a|i−j| j = 0, or i+ j = n

2

a|i−j| + ai+j j > 0, and i+ j < n
2

a|i−j| − an−(i+j) j > 0, and i+ j > n
2

for 0 ≤ i, j < n/2. This transformation shows that R-LWE can be viewed as a variant of
the (n/2)-dimensional LWE problem where the random matrix A has this special form.
We consider all known attacks on RLWE and claim that they do not achieve a lower
complexity than the standard lattice attacks on LWE, i.e., currently there is no special
attack on R-LWE which exploits the ring structure of R corresponding to this special
structural distribution of A, similar to the case of RLWE over a power-of-two cyclotomic
ring. Therefore, we conclude that the current best attacks on R-LWEq,α are the standard
lattice attacks, which require the same attack complexity as the lattice attacks on the
(n/2)-dimensional LWE problem.
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Fig. 2. Polynomial representation of number fields and canonical embedding

K = Q(ζ) Q[X]/(Xn + 1)

	

F = Q(ξ) Q[Y ]/(g(Y )) Rn/2

Y 7→ X +X−1

'

τ'

4 Approximate Homomorphic Encryption over the Real Numbers

The HEAAN scheme of Cheon et al. [13, 12] is the first HE system which supports an
efficient rounding operation for approximate arithmetic. It allows us to encrypt a number
of complex numbers in a single ciphertext and perform an approximate arithmetic between
encrypted vectors in a SIMD manner. However, there remained one significant problem
about the plaintext space.

Most of the real-world applications require computations over the purely real numbers,
but the original HEAAN scheme could encrypt a complex number in each of plaintext
slots. The previous researches [30, 29] used the set of real numbers as a subring of complex
numbers, but this approach cannot be a fundamental solution for the following reason.
Every algorithm of the original HEAAN scheme, such as homomorphic arithmetic and
rounding operation, adds a small complex error to the plaintext vector. The imaginary part
of an encrypted plaintext can gradually increase as the computation progressed, and finally
the desired result (real part) can no longer be recovered after its imaginary part becomes
larger than the ciphertext modulus. Consequently, every circuit in previous applications
had a limited depth to bound the size of imaginary parts during its evaluation.

In this section, we describe a HE scheme which is optimized in the approximate com-
putation over the real numbers compared to the original HEAAN scheme with complex
plaintext slots. The security of our scheme relies on the RLWE assumption over the ring
R = Z[ξ] introduced in the previous section. For simplicity, the integer m will be chosen
as a power of two so that n = m/2 and Φm(X) = Xn + 1.

4.1 Canonical Embedding and Packing Technique

In this subsection, we describe the canonical embedding map of the conjugate-invariant
field and explain how to represent its elements. As mentioned in the previous section, the
conjugate-invariant field F = Q(ξ) can be identified with the polynomial ring Q[Y ]/(g(Y ))
for the minimal polynomial g(Y ) ∈ Z[Y ] of ξ over Q. Note that g(Y ) is a polynomial of
degree (n/2) satisfying g(X+X−1) = X

n
2 +X−

n
2 . Let ξj = ζ4j+1+ζ−(4j+1) for 0 ≤ j < n/2.

Then {ξ0, . . . , ξn
2
−1} forms the set of distinct roots of g(Y ) since Xn + 1 = (X − ζ)(X −

ζ3) . . . (X − ζm−1) =
∏n

2
−1

j=0 (X2 − ξj · X + 1). Therefore, we have a commute diagram
(Fig. 2) for a polynomial representation of number fields by identifying Y 7→ X +X−1.

Let us denote by τ the canonical embedding of F = Q[Y ]/(g(Y )) into Cn/2. It sends
an element a(Y ) to the vector of its evaluations τ(a) = (a(ξj))0≤j<n

2
at the roots of g(Y ).
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Since all roots of g(Y ) are real, F is a totally real number field and the image of τ is a
subring of Rn/2. The canonical embedding norm of an element of a number field is defined
by the norm of its canonical embedding. For example, we write ‖a‖can∞ := ‖τ(a)‖∞ and
‖a‖can2 := ‖τ(a)‖2 for a ∈ F .

The packing technique of HE system allows us to encrypt a multiple number of mes-
sages in a single ciphertext and supports the parallel computation in a SIMD manner.
It has been one of the most important techniques for the performance improvements of
HE schemes in terms of expansion rate and amortized computational cost. The packing
method of approximate HE scheme [13] is based on the canonical embedding over the
complex numbers.

We present a new packing method over the real numbers, by modifying the previ-
ous solution over the complex plane. The core idea is to restrict the domain of canonical
embedding τ to the ring of integers R = Z[Y ]/(g(Y )). In other words, the decoding algo-
rithm transforms an element a(Y ) of R into the vector τ(a) = (a(ξj))0≤j<n/2 of dimension
(n/2). This vector is real as noted above. Conversely, the encoding map takes a real vector
x = (xj)0≤j<n/2 ∈ Rn/2 as an input. It first computes the rounding x′ = bxeτ(R) ∈ Rn/2,
which is an element of τ(R) with a small rounding error ‖x− x′‖can2 . The output is ob-
tained by computing the inverse of x′ which is an integral polynomial in R = Z[Y ]/(g(Y )).
Our packing method is explicitly described as follows.

• Ecd(x). For given x = (xj)0≤j<n/2 ∈ Rn/2, discretize x into τ(R). Output the corre-
sponding polynomial m(Y ) = τ−1

(
bxeτ(R)

)
∈ R.

• Dcd(m). For given m ∈ R, output the vector x = (m(ξj))0≤j<n/2 ∈ Rn/2.

The Ecd algorithm can be viewed as an approximate inverse of the decoding function with
a small rounding error. One can multiply a scale factor to an input vector before the
rounding operation to reduce the relative size of rounding error and preserve the precision
of plaintexts.

As a toy example, let n = m/2 = 4. Then ζ8 = exp(πi/4) = (1 + i)/
√
2 is an m-

th primitive root of unity, and we have {ξ0, ξ1} = {
√
2,−
√
2}. For a real vector x =

(1.1, 2.3), its encoding polynomial with the scaling factor ∆ = 64 is obtained by m(Y ) =
τ−1

(
b∆ · xeτ(R)

)
= 109− 27Y . Conversely, the decoded vector of 109− 27Y is computed

by ∆−1 · Dcd(m) = 1
64(109 − 27

√
2, 109 + 27

√
2) ≈ (1.1065, 2.2997), which is a good ap-

proximation of the original vector x.

4.2 Scheme Description

This subsection gives a explicit description of our HE scheme over the real numbers. Our
scheme is very similar to the original HEAAN scheme, but it exploits a different ring
structure R = Z[ξ]. We first propose a method to represent the elements of the conjugate-
invariant field F .

The number field F can be identified with Qn/2 as a Q-module. For example, an ar-
bitrary element of F = Q[Y ]/(g(Y )) can be uniquely expressed as the sum

∑n
2
−1

j=0 aj · Y j

for some aj ∈ Q, which corresponds to the isomorphism a 7→ (a0, . . . , an
2
−1) between

two modules. However, this representation is not the best choice for the construction of
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HE system. One major reason is that the image {τ(1), τ(Y ), . . . , τ(Y
n
2
−1)} of the basis

{1, Y, . . . , Y
n
2
−1} does not form an orthogonal set in the space Rn/2.

The conjugate-invariant field F = Q[Y ]/(g(Y )) can be understood as a subfield of
K = Q[X]/(Xn + 1) by identifying Y = X + X−1 as noted in the previous subsection.
Every element a(X) of F ≤ K can be uniquely expressed as a Laurent polynomial a(X) =

a0+
∑n

2
−1

i=1 ai(X
i+X−i) of degree and order strictly less then (n/2) for some a0, . . . , an

2
−1 ∈

Q. In the following, an arbitrary element a(X) of F will be identified with its vector of
coefficients (a0, . . . , an

2
−1) ∈ Qn/2. Note that the set {1, X +X−1, . . . , X

n
2
−1 +X1−n

2 } is
a basis of F (resp. R) as a module over Q (resp. Z). In addition, the image of this basis
with respect to the canonical embedding map τ forms an orthogonal basis in Rn/2.

This orthogonal property allows us to use an efficient rounding operation on F as well
as a modulo operation over R. We define the rounding operation b·e : F → R by sending
each of coefficients ai ∈ Q to the closest integer baie ∈ Z. Note that bae is an element
of R which minimizes the rounding error ‖a− bae‖can2 with respect to the `2 canonical
embedding norm. Similar to the rounding operation, the modulo q operation is simply
defined by the coefficient-wise modular reduction, i.e., [a]q is the element of a+ qR which
minimizes the size ‖[a]q‖can2 .

• Setup(p, 1λ, L).
- The base integer p, the number of levels L and the security parameter λ are given
as input. Set moduli q1, q2, ..., qL, which are usually chosen as qi = pi .

- Choose integers m and P , and small distributions χkey, χenc, and χerr over the ring
R.

- Return the parameter set params← (m,P, χkey, χenc, χerr).

The setup step should generate a HE parameter set that achieves λ-bit of security level
against the best known attacks on RLWE. A security proof will be given at the end of this
subsection.

• KeyGen(params).

- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a ← U(RqL) and e ← χerr. Set the public key as pk ← (b, a) ∈ R2

qL
where

b← −as+ e (mod qL).
• KSGen(s1, s2). For s1, s2 ∈ R, sample a′ ← U(RP ·qL) and e′ ← χerr. Output the

switching key as swk← (b′, a′) ∈ R2
P ·qL where b′ ← −a′s2 + e′ + P · s1 (mod P · qL).

- Set the evaluation key as evk← KSGen(s2, s).
• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output v · pk+ (m+ e0, e1)

(mod qL).
• Decsk(ct). For ct = (c0, c1) ∈ R2

q`
, output m′ = c0 + c1 · s (mod q`).

The decryption algorithm can be simply written by m′ ← [〈ct, sk〉]q` . The encryption
procedure returns a level L ciphertext ct which satisfies [〈ct, sk〉]qL ≈ m, i.e., we can only
recover an approximate value of m from its encryption. We use the canonical embedding
norm to measure the size of polynomials in R.

• Add(ct, ct′). For ct, ct′ ∈ R2
q`
, output ctadd ← ct+ ct′ (mod q`).

10



• Multevk(ct, ct′). For ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

q`
, let (d0, d1, d2) = (c0c

′
0, c0c

′
1 +

c1c
′
0, c1c

′
1) (mod q`). Output ctmult ← (d0, d1) + bP−1 · d2 · evke (mod q`).

• RS`→`′(ct). For a ciphertext ct ∈ R2
q`

at level `, output ct′ ← b(q`′/q`) · cte (mod q`′).
We will omit the subscript (`→ `′) when `′ = `− 1.

The algorithms Add and Multevk perform the arithmetic operations over encrypted plain-
texts. The rescaling procedure RS`→`′(·) transforms a level ` encryption of m into an en-
cryption of (q`′/q`) · m of level `′ securely. We show the correctness of our scheme and
estimate the size of noise in Appendix.

Security. We claim that our HE scheme is IND-CPA secure under the hardness of RLWE
problems over the ring R. It can be shown by considering the following three distributions:

D1 = {(pk, ct) : pk← KeyGen(params), ct← Encpk(0)},
D2 = {(pk, ct) : pk← U(R2

q), ct← Encpk(0)},
D3 = {(pk, ct) : pk← U(R2

q), ct← U(R2
q)}.

First, the distributions D1 and D2 are computationally indistinguishable under the assump-
tion of R-LWEqL,χerr(χkey) since the key generation step samples s from χkey and generates
an RLWE sample pk of parameter (qL, χerr). The second and third distributions are com-
putationally indistinguishable as long as R-LWEqL,χerr(χenc) since a sample from D2 forms
two independent RLWE samples of parameter (qL, χerr) with a secret v ← χenc. Finally,
the evaluation key evk← KSGen(s2, s) can be viewed as an encryption of s2 encrypted by
the secret s. The distribution of evk can be indistinguishable from the uniform distribution
onR2

P ·qL under the assumption of circular security when the R-LWEP ·qL,χerr(χkey) problem
is hard.

4.3 Implications of the Conjugate-invariant Ring

This section compares our approximate HE scheme over the real numbers with the original
HEAAN scheme from a variety of perspectives. We claim that our scheme can have twice
as many plaintext slots as HEAAN while guaranteeing the same security level and perfor-
mance. Furthermore, the utilization of the conjugate-invariant ring fundamentally blocks
the complex explosion problem of HEAAN which possibly effect on the most significant
bits of real messages.

Representation of ring elements. Our HE scheme is constructed over the residue ring
Rq = {a(X) ∈ Zq[X]/(Xn + 1) : a(X) = a(X−1)} for an integer q. We introduce two
methods to represent the ring elements of Rq with different pros and cons.

Basically we use the coefficient representation (a0, . . . , an−1) ∈ Zn/2q of a(X) ∈ Rq as
described in the previous subsection. The coefficient representation is useful to perform the
non-arithmetic operations such as the rounding operation in rescaling procedure. However,
we have to consider the following representation for an efficient multiplication between
polynomials in Rq.

Suppose that q is an integer such that there exists an m-th primitive root ωm of
unity in Zq. Note that ωn := ω2

m (resp. ωn
2
:= ω4

m) is an n-th (resp. (n/2)-th) primitive
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root of unity in Zq. The map Zq[X]/(Xn + 1) → Znq , a 7→ (a(ωm), a(ω
3
m), . . . , a(ω

m−1
m ))

is a ring isomorphism since the m-th cyclotomic polynomial is expressed as a product
Xn + 1 = (X − ωm)(X − ω3

m) . . . (X − ω2n−1
m ) modulo q. We point out that an element

a ∈ Zq[X]/(Xn + 1) is contained in the subring Rq if and only if a(ωjm) = a(ω2n−j
m ) for all

j = 1, 3, . . . , n − 1. Therefore, the map a 7→ â = (a(ωm), a(ω
5
m), . . . , a(ω

m−3
m )) is an ring

isomorphism from Rq to Zn/2q satisfying â · b = â � b̂ for any a, b ∈ Rq, where � denotes
the Hadamard (component-wise) multiplication between vectors. It enables us to perform
an arithmetic operation of Rq in O(n) modulo q operations, but the rescaling procedure
cannot be done under this representation.

Complexity of ring operations. The conversion between two representations a 7→ â is
one of the most important parts to improve the efficiency of the HE system on Rq. It can
be viewed as a linear transformation on Zn/2q by identifying the elements of Rq with their
coefficient vectors.

The NTT is a discrete Fourier transform over a finite field. Specifically, the NTT over
the finite field Zq with an m-th primitive root ωm of unity modulo q, denoted by NTTm(·),
converts a polynomial in Zq[X]/(Xm − 1) into a vector in Zmq by a 7→ (a(ωjm))0≤j<m. The
NTT is a ring isomorphism between Zq[X]/(Xm−1) and Zmq , and its inverse is denoted by
INTTm(·). The NTT conversion can be understood as a linear map from Znq to Znq whose
matrix representation is the m×m Vandermonde matrix generated by {1, ωm, . . . , ωm−1m }.
The FFT algorithm can compute NTTm(·) in O(m · logm) operations in Zq.

There have been suggested several methods to modify the NTT conversion to per-
form some operations used in cryptographic schemes. For example, Alkim et al. [2] and
Longa-Naehrig [31] exploit a variant of NTT to make an efficient conversion between dis-
tinct representations of a ring element in Zq[X]/(Xn + 1). In the following, we propose a
specialized FFT algorithm to perform the linear transformation a 7→ â on Rq efficiently.

The main idea is to express the linear transformation a 7→ â by a composition of (n/2)-
dimensional NTT conversion and a few simple arithmetic operations. To be precise, the
equality

a(ω4j+1
m ) = a(ωm · ωjn

2
) = a0 +

n
2
−1∑
i=1

ai

(
ωim · ω

ij
n
2
+ ω−im · ω

−ij
n
2

)

= a0 +

n
2
−1∑
i=1

ai · ωim · ω
ij
n
2
+

n
2
−1∑
i=1

an
2
−i · ω

−(n
2
−i)

m · ωijn
2

= a0 +

n
2
−1∑
i=1

(
ai · ωim + an

2
−i · ω

−(n
2
−i)

m

)
ωijn

2
= ã(ωjn

2
)

holds for any 0 ≤ j < n
2 where

ã(X) = a0 +
(
a1 · ωm + an

2
−1 · ω

1−n
2

m

)
X + · · ·+

(
an

2
−1 · ω

n
2
−1

m + a1 · ω−1m
)
X

n
2
−1.
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Fig. 3. An example of fixed-point operation

1.12 2.34
Scaling by p

11200 23400
Encryption

11209 23395

Mult

262234563
Rescaling

26219
Decryption

26219
Scaling by p−1

2.62

⊗

Therefore, the linear transformation a 7→ â can be written by the composition of NTTn/2
and a simple arithmetic operation

(a0, . . . , an
2
−1) 7→

(
a0, a1 · ωm + an

2
−1 · ω

1−n
2

m , . . . , an
2
−1 · ω

n
2
−1

m + a1 · ω−1m
)
,

and we can compute its inverse by

a =
(
ã0, 2

−1 · (ã1 · ω−1m + ãn
2
−1 · ωm), . . . , 2−1 · (ãn

2
−1 · ω

1−n
2

m + ã1 · ω
n
2
−1

m )
)

for ã = (ã0, . . . , ãn
2
−1)← INTTn/2(â).

Now let us consider the multiplication of polynomials in the conjugate-invariant ring R.
For given polynomials a, b ∈ Rq with coefficient representation, we compute their product
c = a · b by computing ĉ = â · b = â � b̂ and recovering c from ĉ. It consists of three
Hadamard multiplications on Zn/2q , two NTTn/2 conversions, and a single INTTn/2. Since
the Hadamard multiplication takes only O(n), the complexity of a multiplication over the
special ring Rq can be estimated by three NTT conversions of dimension (n/2), while a
multiplication over the ring Zq[X]/(Xn +1) includes three NTT conversions of dimension
n. As a result, the computational cost of an arithmetic operation on Rq is almost half that
of the m-th cyclotomic ring.

4.4 Application to Fixed-Point Operation

The HEAAN scheme is able to evaluate a circuit approximately, and specifically our variant
is optimized in an arithmetic over the real numbers. We explain how to use our scheme to
perform the fixed-point operation with a finite precision.

As described in Section 4.1, a real-valued vector can be identified with a polynomial in
the conjugate-invariant ring R via the canonical embedding τ . For the use of our scheme in
fixed-point operation, the base p in scheme description will be chosen as a scaling factor. So
an arbitrary real vector x ∈ Rn/2 is encoded to a polynomial m ∈ R such that m ≈ p·τ−1(x)
with a small rounding error. An encryption procedure induces an additional error so that
an encryption of m is a pair ct = (c0, c1) ∈ R2

qL
satisfying [c0+c1 ·s]qL = m+e ≈ p ·τ−1(x)

for some small error e. The precision of an encrypted plaintext is decided by a scaling factor
p and the size of errors, i.e., we can use a larger scaling factor to keep more significant bits.

Let cti be an encryption of mi ≈ p · τ−1(xi) for i = 1, 2. Then their homomorphic
multiplication returns a ciphertext ctmult encrypting

m1 ·m2 ≈ p2 · τ−1(x1) · τ−1(x2) = p2 · τ−1(x1 � x2)

13



Table 1. Comparison of our scheme and HEAAN

Approximate HE Ours (2n, q) HEAAN (n, q)

Number of plaintext slots n n/2

NTT dimension n n

Bit size of ciphertexts 2n log q 2n log q

which is an encoding of the slot-wise product x1�x2 with scaling factor p2. Then, we can
use the rescaling procedure RS(·) to obtain an encryption of p · τ−1(x1 � x2) and recover
the initial scaling factor p. In Fig. 3, we describe an example of fixed-point multiplication
between 1.12 and 2.34 with scaling factor p = 104. Numbers in gray boxes represent the
encrypted values in plaintext slots.

The scaling factor stays the same and the rescaling procedure reduces a ciphertext
level by one. Therefore, for the evaluation of a circuit with depth L, the bitsize of largest
ciphertext modulus should be O(L · log p) which grows linearly on the depth and bit
precision of plaintext, compared to the exponential growth based on the HE schemes for
exact computations without rounding operation [8, 21].

5 Discussions

5.1 Comparison with HEAAN

The security of our scheme relies on the hardness of R-LWE problem. From the crypt-
analysis on RLWE over the conjugate-invariant ring in Section 3.2, our approximate HE
scheme over R = {a(X) ∈ Z[X]/(X2n + 1) : a(X) = a(X−1)} has (approximately) the
same security level as the original HEAAN over Z[X]/(Xn + 1) for a power-of-two inte-
ger n, while the other parameters are set equal. In this setting, the maximum number of
plaintexts packed in a single ciphertext in our scheme is n, while that of HEAAN is (n/2).
This implies our approximate HE scheme supports twice more parallel computations than
HEAAN in a SIMD manner.

Since it requires n log q bits to express an element of the form a0+
∑n−1

i=1 ai(X
i+X−i) ∈

Rq, both schemes essentially have the same key size and ciphertext size. Furthermore, both
schemes exploit the NTT of dimension n for a ring multiplication, so they have almost same
arithmetic complexity. As a result, our scheme over the dimension 2n actually performs as
well as HEAAN over the dimension n while carrying a definite advantage in the number
of plaintext slots.

5.2 Full RNS Variant

Many of ring-based HE schemes such as BGV [8, 23] and BFV [7, 21] require polynomial
arithmetic over a huge modulus. Recent implementations of HE schemes [37, 27] exploit
the Residue Number System (RNS) for the performance improvements. In particular, there
have been suggested some variants of BFV [4, 25] which can be implemented without high-
precision arithmetic.
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In both the original HEAAN and our scheme, ciphertext moduli are chosen to be powers
of a base because the scaling factor of a rescaling procedure is equal to the ratio of two
consecutive ciphertext moduli. Unfortunately, this restriction makes it difficult to apply
the existing RNS techniques to HEAAN.

Cheon et al. [11] recently proposed a method to fully eliminate the high-precision
arithmetic of HEAAN based on the approximate base. We leave it to the reader to check
that this idea can be directly applied to our scheme.
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A Noise Analysis

We show the correctness of our scheme and analyze the noise from homomorphic operations.
If we identify an element of a ∈ F with its coefficient vector (a0, . . . , an

2
−1) such that

a = a0 +
∑n

2
−1

j=1 aj · (Xj +X−j), then its canonical embedding can be represented by

τ(a) =

a0 +
n
2
−1∑
i=1

ai · (ζ(4i+1)j + ζ−(4i+1)j)


0≤j<n

2

= a0 · u0 +

n
2
−1∑
j=1

aj · uj

for the orthogonal vectors u0 = (1, . . . , 1) and ui = (ζ(4i+1)j + ζ−(4i+1)j)0≤j<n
2
in Rn/2.

Note that ‖u0‖22 = n
2 and ‖uj‖22 = n.

For a random variable X, E[X] denotes the expected value of X. We follow a heuristic
approach of Halevi and Shoup [26] which estimates the noise variance of its canonical
embedding. Namely, we consider a as a random variable over F , then the expected squared
`2 canonical norm of a is given by

E
[
(‖a‖can2 )2

]
= n · E

1
2
· a20 +

n
2
−1∑
i=1

a2i

 ≤ n · E [‖a‖22] .
Therefore, each entry of τ(a) has a variance V ≈ 2 · E

[
‖a‖22

]
, and we call V the noise

variance of a.
We choose the distributions χerr, χkey, and χenc on R as follows. For an error parameter

σ > 0, the error distribution χerr draws each coefficient independently from the discrete
Gaussian distribution of a variance σ2. For an integer h > 0, the secret distribution χkey
uniformly at random from the set {0,±1}

n
2 of signed binary vectors that have exactly

h nonzero coefficients. The encryption key distribution χenc draws each of coefficients
independently from {0,±1}, with probability 1/4 for each of −1 and +1, and probability
being zero 1/2.

When a ∈ R is sampled from U(Rq), then each of its coefficient has the variance
(q2 − 1)/12 < q2/12, so we get the noise variance Vq ≈ n · q2/12. When a← χkey, we get
a noise variance of Vkey = 2h. When a ← χerr (resp. χenc), we get Verr = n · σ2 (resp.
Venc = n/2).

Encoding. For a given x ∈ R
n
2 , there exists a0, . . . , an

2
−1 ∈ R such that x =

∑n
2
−1

i=0 ai ·ui.
its rounding x′ to τ(R) is obtained by rounding the numbers ai’s to the closest integers.
Therefore, the rounding error is bounded by ‖x− x′‖22 ≤ (1/4) · (n/2) · n = n2/8.

Rescaling. For a level ` ciphertext ct = (c0, c1) ∈ R2
q`
, let ct′ = bq−k · cte (mod q`−k).

Then it is satisfied that [〈ct′, sk〉]q`−k
= q−k · [〈ct, sk〉]q` − q−k · 〈[ct]qk , sk〉. We can (heuris-

tically) assume that [c0]qk and [c1]qk behave as uniform random variables on Rqk . There-
fore, the noise variance of rescaling error q−k · ([c0]qk + [c1]qk · s) has a variance of Vrs =
(n/12) · (1 + 2h).
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Encryption. Let pk = (b = −as + e, a) ∈ R2
qL

be the public key and ct ← Encpk(m)
be an encryption of m ∈ R generated by v ← χenc and e0, e1 ← χerr. Then we have
[〈ct, sk〉]qL = m + eenc for eenc = v · e + e0 + e1 · s. Therefore, the noise variance of
encryption error is obtained by Venc · Verr + Verr + Verr · Vkey = n · σ2 · (1 + 2h+ n/2).

Addition. This operation has no additional error since 〈ctadd, sk〉 = 〈ct, sk〉 + 〈ct′, sk〉
(mod q`).

Multiplication. For ciphertexts ct = (c0, c1) and ct′ = (c′0, c
′
1) of level `, let (d0, d1, d2) =

(c0c
′
0, c0c

′
1 + c1c

′
0 + c1c

′
1) (mod q`). It is direct from the definition that d0 + d1s+ d2s

2 =
〈ct, sk〉 · 〈ct′, sk〉 (mod q`). We can assume that d2 looks a uniform random variable on Rq`
as above.

Let evk = (b′ = −a′s + e′, a′) ∈ R2
P ·q` be the evaluation key. The multiplication er-

ror comes from the key-switching procedure d2 7→ bP−1 · d2 · evke (mod q`). Note that
[〈bP−1 · d2 · evke, sk〉]q` = P−1 · d2 · [〈evk, sk〉]P ·q` + ers = d2 · s2 + ers + P−1 · d2 · e′
where ers is a rescaling error. Therefore, the output ciphertext satisfies 〈ctmult, sk〉 =
〈ct, sk〉 · 〈ct′, sk〉+ emult (mod q`) for a multiplication error emult = P−1 · d2 · e′ + ers, and
its noise variance is obtained by Vmult = Vrs+P

−2·Vq` ·Verr = (n/12)·(1+2h+P−2·q2` ·n·σ2)
which is approximately equal to Vrs = (n/12) · (1 + 2h) when P � q`.
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