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The Discrete Logarithm Problem with Auxiliary
Inputs

Jung Hee Cheon, Taechan Kim and Yongsoo Song

Abstract. The Discrete Logarithm Problem (DLP) is a classical hard problem in computational
number theory, and forms the basis of many cryptographic schemes. The DLP involves finding
α for the given elements g and gα of the cyclic group G = 〈g〉 of finite order n. Recently,
many variants of the DLP have been used to ensure the security of pairing-based cryptosystems,
such as ID-based encryption, broadcast encryption, and short signatures. These cryptosystems
provide various functionalities, but their underlying problems are not well understood. A gen-
eralization of these variants of DLP, called the Discrete Logarithm Problem with Auxiliary
Inputs (DLPwAI), aims to find α for some given g, gα, . . . , gα

d

.
This survey article first recalls several well-known solutions of the original DLP, and mainly

focuses on recent attempts to solve the DLPwAI. Research into the DLPwAI started with
Cheon’s p± 1 algorithms [11] at EUROCRYPT ’06, which use the embedding of the discrete
logarithm into the extension of the finite field. Later, Satoh [34] and Kim et al. [24] tried to gen-
eralize Cheon’s algorithm to the case of Φk(p) for k ≥ 3, where Φk(·) is the k-th cyclotomic
polynomial. However, Kim et al. found that this generalization of Cheon’s algorithm cannot
be better than the usual square-root complexity algorithms, such as Pollard’s rho algorithm,
when k ≥ 3.

We also introduce a recent result by Cheon and Kim [25] that reduces the DLPwAI to
the problem of finding a polynomial of degree d with a small value set. Finally, we present
a generalized version of the DLPwAI introduced by Cheon, Kim, and Song [15], with an
algorithm for this problem, even when neither p+ 1 or p− 1 has an appropriate small divisor.
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1 Introduction

Let G be a cyclic group of finite order n with a generator g. The Discrete Logarithm
Problem (DLP) aims to find the element α of Zn when two elements g and h = gα

are given. The DLP is a classical hard problem in computational number theory, and
many encryption schemes, signatures, and key exchange protocols rely on the hardness
of the DLP for their security.
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In recent decades, many variants of the DLP have been introduced. These include
the Weak Diffie–Hellman Problem [29], Strong Diffie–Hellman Problem [4], Bilinear
Diffie–Hellman Inversion Problem [3], and Bilinear Diffie–Hellman Exponent Prob-
lem [8], and are intended to guarantee the security of many cryptosystems, such as
traitor tracing [29], short signatures [4], ID-based encryption [3], and broadcast en-
cryption [8]. These problems incorporate additional information to the original DLP
problem. Although such additional information could weaken the problems, and their
hardness is not well understood, these variants are widely used because they enable
the construction of cryptosystems with various functionalities.

The first study of the weakness of these problems was done by Cheon [11, 12].
He realized that these variants can be considered as the problem of finding α when
g, gα, . . . , gα

d
are given, and called this problem the Discrete Logarithm Problem with

Auxiliary Inputs (DLPwAI). The DLPwAI can be solved efficiently with a time com-
plexity of O(

√
p/d), when d is a small divisor of p ± 1 for the prime order p of the

group G. This complexity is the same as the lower bound of the complexity of solving
the DLPwAI in the generic group model [35]. Since the lower bound for the original
DLP is Ω(

√
p) in the generic group model, Cheon’s algorithm demonstrates the weak-

ness of the DLPwAI in some cases. The algorithm for the case p−1 was independently
proposed by Brown and Gallant [9].

The idea of Cheon’s algorithm is to embed the discrete logarithm α into the fi-
nite fields Fp or Fp2 . Precisely, he exploits the fact that αd can be embedded into
an element of the small subgroup of Fp or Fp2 when d is a divisor of p ± 1. Later,
Satoh [34] generalized this algorithm using the embedding of α ∈ Fp into the general
linear group GLk(Fp). The generalization attempts to solve the problem when d is a
divisor of Φk(p) for the k-th cyclotomic polynomial Φk(·). However, its complexity
for k ≥ 3 was not clearly understood. Recently, Kim et al. [24] realized that Satoh’s
generalization is essentially the same as the embedding of Fp into Fpk , and clarified
the complexity of the algorithm. Unfortunately, their result suggests that, in most
cases, the complexity of this generalization is not faster than the current square-root
complexity algorithm, such as Pollard’s rho algorithm [31], for k ≥ 3.

Each of the above algorithms uses the embedding technique of the finite field. This
can be considered as the quantitative version of the reduction algorithms from the DLP
into the Diffie–Hellman problem [27, 28]. In contrast, Kim and Cheon [25] proposed
an algorithm to solve the DLPwAI with a polynomial mapping instead of embedding
the element. Precisely, they compute two lists of gf(riα) and gf(sj) for random ele-
ments ri and sj for a polynomial f of degree d using fast multipoint evaluation, and
find a collision between them. For this algorithm to be efficient, it is necessary to
find a polynomial for which the curve defined by f(x)− f(y) = 0 has many rational
points. Their algorithm shows the same asymptotic complexity as Cheon’s algorithm
for the cases of p±1, but finding a good polynomial for Φk(p), k ≥ 3 remains an open
problem.

A recent result on the DLPwAI was reported by Cheon, Kim, and Song [15]. They
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introduced a generalization of the DLPwAI, called the GDLPwAI. This problem aims
to find α for given gα

e1 , . . . , gα
ed for some e1, . . . , ed. In particular, they proposed a

heuristic algorithm that solves the GDLPwAI, where the ei are elements of a multi-
plicative subgroup of Z×p−1.

Organization This paper is organized as follows. In Section 2, we recall some
well-known DL algorithms, including the baby–step giant–step (BSGS) algorithm,
Pollard’s rho/kangaroo algorithms, the Pohlig–Hellman algorithm, the index calculus
algorithm, and the number/function field sieve. In Section 3, we introduce the DLP-
wAI, and describe Cheon’s algorithm for cases of p±1. Several attempts to generalize
Cheon’s algorithm are discussed in this section. Sections 4 and 5 explain another ap-
proach to solving the DLPwAI using polynomials with small value sets. In Section 6,
we introduce the GDLPwAI, and propose an algorithm to solve this problem. Sec-
tion 7 examines the implications of Cheon’s algorithm, and some open problems and
further work are discussed in Section 8.

2 Algorithms for the ordinary DLP

In this section, some classical algorithms for solving the original DLP are briefly in-
troduced. Though the main topic of this manuscript is the DLPwAI, it is necessary to
understand the basic algorithms for the original DLP to follow the arguments later in
this paper. For more information, refer to [17].

2.1 Generic algorithms

First, consider the order of the cyclic group G to be an integer n that is not necessarily
prime. Generic algorithms solve the DLP without using specific properties or repre-
sentations of the base group G, so they can be applied to an arbitrary group. However,
in the sense of the generic group model [35], the lower bound of the runtime of a
generic algorithm is Ω(

√
p) where p is the largest prime divisor of n.

The BSGS algorithm solves the DLP deterministically in O (
√
n) time. It computes

α by making two lists of elements of G and finding a collision.
The Pohlig–Hellman algorithm solves the DLP efficiently when the order n ofG has

only small prime factors. For n =
∏
i q
fi
i , the algorithm first solves α mod qfii for

each i using the BSGS algorithm, and then recovers α using the Chinese Remainder
Theorem (CRT). Thus, the total complexity depends on the size of the largest prime
factor of n.

While the BSGS algorithm requires O (
√
n) storage for the lists, Pollard’s rho algo-

rithm only requires constant storage size, although it is probabilistic. Pollard’s kanga-
roo algorithm is also probabilistic, and determines the discrete logarithm α contained
in the specific interval [a, b]. Its complexity is O(

√
b− a).
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These algorithms are all generic in the sense that they work for a finite cyclic group
G of any order n. Moreover, all of these algorithms have exponential time complexi-
ties.

Baby–step giant–step algorithm

The BSGS algorithm is a simple, generic and deterministic algorithm to solve the
DLP. The total complexity is O (

√
n) operations in G, but it must also store O (

√
n)

elements of G.
For a given generator g of G, we first construct a lookup table (baby–steps) which

contains all the pairs (i, gi) for 0 ≤ i < m, and sort the pairs of table by the second
component. To find the discrete logarithm α of a given element h = gα, we calculate
g−d
√
nejh for each 0 ≤ j < d

√
ne (giant–steps) and compare with the lookup table in

order to identify coincidences.
If a collision g−j0h = gd

√
nei0 occurs, then the discrete logarithm is calculated from

h = gj0+d
√
nei0 and α = j0 + d

√
nei0. For any 0 ≤ α < n, there exist two integers

satisfying 0 ≤ i0, j0 < d
√
ne and α = j0 + d

√
nei0. Therefore, the two lists L1 and

L2 always have a common element.
Note that we do not need to store the whole elements of list L2, and list L1 may be

reused to solve the DLP for another element h′ of G. Moreover, the BSGS algorithm
even works when the order n of G is not known by substituting the size d

√
ne + 1 of

the lists for a sufficiently large integer `.

The Pohlig–Hellman algorithm

If all prime factors of an integer n are less than a positive real number B, then n is
called B-smooth. The Pohlig–Hellman algorithm solves the DLP efficiently when n
is a smooth number.

Let n =
∏
q∈P q

eq be the factorization of n for a set P of primes. The main idea
of the Pohlig–Hellman algorithm is to calculate α (mod qeq) for each q ∈ P for
α = logg h. Then, α ∈ Zn can be easily recovered using the CRT.

Assume g and h = gα are given. Considering a prime divisor q ∈ P , there exist
c0, c1, . . . , ceq−1 ∈ [0, q) satisfying α ≡ c0 + c1q + · · ·+ ceq−1q

eq−1 (mod qeq). The
coefficients c0, c1, . . . , ceq−1 are determined inductively as follows. First, from the

equations α ≡ c0 (mod q) and
(
g
p−1
q

)c0
= h

p−1
q , compute c0 in O

(√
q
)

using the

BSGS algorithm. Note that two elements g
p−1
q and h

p−1
q are contained inH = 〈g

p−1
q 〉,

which is a subgroup of G of prime order q. Therefore, c0 ∈ [0, q) is uniquely deter-
mined. After calculating c0, c1, . . . , ci−1, the next coefficient ci is obtained from the

equations α ≡ c0 + c1q + · · · + ciq
i (mod qi+1) and g

(c0+c1q+···+ciqi) p−1
qi+1 = h

p−1
qi+1 ,

which is equivalent to
(
g
p−1
q

)ci
= g

−(c0+c1q+···+ci−1q
i−1) p−1

qi+1 h
p−1
qi+1 . This requires

O
(√
q
)

exponentiations using the BSGS algorithm. Repeating this process for all
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q ∈ P , every modulus α (mod qeq) is obtained in O
(∑

q∈P eq
√
q
)

exponentiations,
and α ∈ Zn can then be recovered.

Pollard’s rho algorithm

The BSGS algorithm requires O (
√
n) memory. Pollard’s rho algorithm [31] effec-

tively reduces the necessary storage size to O(1).
For a given g and h = gα, Pollard’s rho algorithm uses a function f : G→ G, where

G is partitioned into three sets S0, S1, S2 of approximately equal size. The function f
is constructed in such a way that the exponents of g and h are traceable, i.e., it is easy
to compute (xi+1, βi+1, γi+1) from (xi, βi, γi) for xi+1 := f(xi) and xi = gβihγi . A
typical example of f(x) is as follows:

xi+1 := f(xi) =


hxi, xi ∈ S0

x2
i , xi ∈ S1

gxi, xi ∈ S2

In this case, the exponents βi and γi are traceable in the following ways:

βi+1 =


βi, xi ∈ S0

2βi, xi ∈ S1

βi + 1, xi ∈ S2

and γi+1 =


γi + 1, xi ∈ S0

2γi, xi ∈ S1

γi, xi ∈ S2

.

Since G is a finite set, the sequence {x1, x2, . . . } obtained by evaluating f itera-
tively must contain a cycle. To find a collision, we compute the pair (xi, x2i) from
(xi−1, x2i−2), and check if xi = x2i. We repeat this process iteratively until a colli-
sion xi = x2i is found. This method is called Floyd’s cycle-finding algorithm, and it
requires O(

√
n) computation time.

If a collision xi = x2i occurs for some i > 0, then the DLP is solved from α =
−(βi − β2i)(γi − γ2i)

−1, unless gcd(γi − γ2i, n) > 1. Under the assumption that f
behaves as a random function, Pollard’s rho algorithm solves the DLP inO(

√
n) group

operations with negligible storage.
The r-adding walk method is a generalized version of Pollard’s rho algorithm that

uses a function with G partitioned into r disjoint sets. Experiments have shown that
the 20-adding walk is very close to the random walk [38].

One way of speeding up the collision detection is to use distinguished points [32].
A distinguished point is an element of G satisfying a specific condition that is easy
to detect. During the algorithm, we check and store only the distinguished points
(xi, βi, γi). If Θ denotes the proportion of distinguished points, then the total com-
plexity is increased by Θ−1 steps, and the expected number of comparisons is lowered
by a factor of Θ. The size of the set of distinguished points can be managed by setting
an appropriate condition.
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Pollard’s kangaroo algorithm

Pollard’s kangaroo algorithm solves the DLP when the discrete logarithm α ∈ [0, n) is
contained in a certain interval [a, b]. The choice a = 0, b = n− 1 for all α is possible,
but Pollard’s rho algorithm is more efficient in this case.

In Pollard’s kangaroo algorithm, we first precompute gei , 1 ≤ i ≤ r for some small
integers e1, . . . , er, whose sizes are approximately

√
b− a. Let f : G→ {1, 2, . . . , r}

be a pseudorandom function. For a suitable integer N , compute xN as follows:

x0 = ga, xi+1 = xig
ef(xi) for i = 0, 1, . . . , N − 1.

Then, until a collision yj = xN is detected, compute the following:

y0 = h, yj+1 = yjg
ef(yj ) for j = 0, 1, . . . , N − 1.

The sequence {x0, x1, . . . } is called a tame kangaroo, and {y0, y1, . . . } is a wild kan-
garoo. Since the mean step size is m = (

∑r
i=1 ei)/r ≈

√
b− a, the wild kangaroo

meets the tame kangaroo with probability 1/m. The complexity of the algorithm is
O(
√
b− a).

2.2 Non-generic algorithms

In this subsection, we discuss non-generic algorithms for solving the DLP. These can
generally be used only in specific groups such as Z∗p or F∗q for prime power q. Although
these algorithms have a restricted group structure, they are more efficient than the
generic algorithms.

The index calculus algorithm is an efficient way to solve the DLP when G = Z∗p.
It consists of two steps: sieving and descent. In the sieving phase, we precompute
the discrete logarithms of the small primes by finding sufficiently many relations of
small primes. In the descent phase, the discrete logarithm of an arbitrary element is
calculated. This algorithm runs in subexponential time. The idea of the original index
calculus algorithm has been improved to the number field sieve and function field sieve
algorithms [1, 19, 20, 23], which are optimized to solve the DLP very efficiently over
an appropriately sized field Fpk . In particular, the complexity is very low when the
characteristic p is small.

Index calculus algorithm

Consider the index calculus algorithm over a multiplicative group G = Z∗p. The in-
dex calculus algorithm is a probabilistic algorithm based on the prime factorization
of integers. Suppose that g is a fixed generator of G. Take a suitable bound B, and
let q0 = −1 and q1 = 2 < q2 = 3 < · · · < qd be the primes less than B. The
index calculus algorithm first precomputes the DLP gβi = qi for 1 ≤ i ≤ d as fol-
lows. For a randomly chosen β ∈ Zp−1, compute the factorization of gβ modulo p. If
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gβ =
∏d
i=0 q

ei
i is a B-smooth number, we have the equation β = e0β0 + · · ·+ edβd in

Zp−1; otherwise, try another value of β. Repeating this process many times, we obtain
d+1 linearly independent equations. Then, the discrete logarithms of qi are recovered
from the linear algebra.

Now, for a given h = gα, we repeatedly choose random elements γ ∈ Zp−1 un-
til hgγ (mod p) can be expressed as a product of primes less than B. If we find
such a γ, then α is determined by hgγ =

∏d
i=0 q

fi
i and α = −γ +

∑d
i=0 fiβi. To

compute the asymptotic complexity of the index calculus algorithm, we use the distri-
bution of smooth integers. The logarithm of the probability that a random integer less
than p is B-smooth is approximately −u logu for u = log p

logB . The complexity equals

Lp[1/2,
√

2] for the optimal bound B = Lp[1/2]. Here, L-notation is defined as

LQ[θ, c] = exp
[
(c+ o(1))(logQ)θ(log logQ)1−θ

]
for c > 0 and 0 ≤ θ ≤ 1. Note that LQ is a polynomial function of logQ when
θ = 0, and an exponential function of logQ when θ = 1. The asymptotic complexity
Lp[1/2,

√
2] of the index calculus algorithm is a subexponential function of log p.

Number field sieve and function field sieve

In the index calculus algorithm, the factor bases are small primes, and the individual
logarithm is found by randomizing a given integer to a smooth integer. There are many
variants of the index calculus algorithm, such as the number field sieve (NFS) and the
function field sieve (FFS) for solving the DLP over F∗p or F∗q for q = pn. In addition,
some variants have been optimized to binary fields.

The following is a simple variant of the index calculus algorithm. Let q = pn for
some prime p and a positive integer n. Assume that p is small compared to q. The
multiplicative group G = F∗q of the finite field Fq is cyclic, and it is used in many
cryptographic schemes for a base group of the DLP. A typical way to represent the
finite field is Fq = Fp[t]/(f) for a monic irreducible polynomial f ∈ Fp[t] with
deg f = n. Assume that g (mod f) ∈ Fq is a generator of F∗q . In the sieving phase,
we precompute the discrete logarithms of “small” factors, and use them to calculate the
discrete logarithm of an arbitrary element. In the polynomial ring Fp[t], a polynomial
is considered to be small if it has a low degree. Set a suitable bound B, and let P =
{f1, f2 . . . , fd} ⊂ Fp[t] be the set of all monic irreducible polynomials with degrees
that are less than B. For randomly chosen β ∈ Zq−1, compute gβ (mod f) ∈ Fq, and
try to factorize this into elements of P to find a relation with the logg fi’s. Repeat this
process until all logg fi’s have been calculated. In the descent phase, the individual
logarithm of an arbitrary element h (mod f) ∈ Fq is obtained when an element γ ∈
Zq−1 is found such that hgγ (mod f) can be expressed as a product of elements of P .

The FFS is similar to the above algorithm, but it also uses some additional tech-
niques. Since the finite field Fq can be represented in many ways, we can increase
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the probability of finding a smooth element and a relation. Therefore, the relation
collection step takes less time, and the asymptotic complexity of the FFS becomes
Lq[1/3, (32/9)1/3] when p ≤ Lq[1/3]. In the case of p > Lq[1/3], the best known
algorithm is the NFS. Its asymptotic complexity is also Lq[1/3], but the coefficient
c is larger. Compared to the index calculus algorithm, the coefficient is lowered to
θ = 1/3.

There are many additional techniques that make the sieving and descent phases more
efficient. For example, in the sieving phase, we can choose two generators x, y of Fq
with a simple relation, and set the factor base as the set of low-degree polynomials of
x or y. In the descent phase, an arbitrary element h may be transformed to an element
of the form z1/z2, such that the zi’s are products of polynomials of lower degrees. The
total complexity of the algorithm depends on the sizes of p and q = pn: when p is
larger, the sieving phase is harder, but the descent phase is easier.

In most cases, the complexity is Lq[1/3, c] for some constant c > 0, but optimized
algorithms can achieve lower complexities under specific conditions. The best-known
algorithm has quasi-polynomial complexity [1] when the base field has a small char-
acteristic.

Since this line of research is still active, readers are advised to refer to recent results
for the current status of this field.

3 The DLPwAI and Cheon’s algorithm
As seen in the previous section, the hardness of the original DLP is well understood,
and so cryptosystems based on this problem with appropriate parameters are believed
to be secure. In recent decades, many cryptosystems based on variants of the DLP
have been proposed. These variants can weaken the security of the original DLP, but
they are widely used because of their flexibility, which enhances the functionality of
the cryptosystems. Many of these variants can be reduced to the DLPwAI, which
seeks to find α ∈ Zp for given g, gα, . . . , gα

d
. In the generic group model [4, 35],

the lower bound of the complexity of solving this problem is Ω(
√
p/d), which is less

than Ω(
√
p), the generic lower bound for the original DLP. There are some generic

algorithms for the original DLP that achieve this minimum complexity, whereas none
of the known algorithms solve the DLPwAI in O(

√
p/d) for arbitrary d and p. The

first attack on the DLPwAI was introduced by Brown and Gallant [9] and Cheon [11,
12] independently. They proposed an algorithm that achieves the lower bound for
the DLPwAI in certain cases. This article follows the method of Cheon’s algorithm.
Cheon’s algorithm was later generalized by Satoh [34] and Kim et al. [24].

3.1 p − 1 cases

Assume that three elements g, g1 = gα, and gd = gα
d

are given for a divisor d of p−1.
The main idea of Cheon’s algorithm is to exploit the fact that αd is contained in the
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subgroup of Z∗p of small order p−1
d . By applying the BSGS algorithm on this smaller

group, we can recover αd. Then, α is recovered in a similar fashion.
To initiate Cheon’s algorithm, a primitive element ξ of Zp is required. Since Z∗p is

a cyclic group of order p − 1, there are exactly φ(p − 1) primitive elements in Zp.
A randomly chosen element in Z∗p has a probability φ(p−1)

p−1 ≥ 1
6 log log (p−1) of being a

primitive element, which is sufficiently large. Thus, it may be assumed that a primitive
element ξ of Zp can be found efficiently if the factorization of p− 1 is known.

Theorem 3.1 ([12]). Let d be a divisor of p− 1. For given g, g1 = gα, and gd = gα
d
,

we can solve α deterministically in O
(√

p−1
d +

√
d

)
exponentiations with storage

O

(
max{

√
p−1
d ,
√
d}
)

.

Proof. Consider a primitive element ξ of Zp. Define ζ = ξd and m = d
√

p−1
d e. There

exist two integers k1 ∈ [0, d) and k2 ∈ [0, p−1
d ) such that α = ξ

p−1
d
k1+k2 . We will

calculate k1 and k2 using two independent BSGS algorithms.
First, we find k2 using the BSGS algorithm. From αd = ξdk2 = ζk2 and gd =

gα
d
= gζ

k2 , there exist two integers 0 ≤ u2, v2 ≤ b
√

p−1
d c such that k2 = mu2 +

v2, or equivalently αdζ−v2 = ζmu2 and gζ
−v2

d = gζ
mu2 . Two integers u2 and v2

are determined in O
(√

p−1
d

)
exponentiations. After finding k2, we again use the

BSGS algorithm, and determine k1 in O(
√
d) exponentiations from the equation g1 =

gα = gξ
p−1
d
k1+k2 . The total complexity is O

(√
p−1
d +

√
d

)
exponentiations, with

O

(
max{

√
p−1
d ,
√
d}
)

storage required for elements of G.

Note that the total complexity O
(

max{
√

p−1
d ,
√
d}
)

of Cheon’s p − 1 algorithm

can be lowered to O
(
p1/4

)
when d ≈ √p.

Based on Pollard’s kangaroo algorithm, Cheon also proposed a probabilistic algo-
rithm needing less storage [12]. Applying this idea to the p−1 algorithm, the complex-

ity becomes O
(√

p−1
d +

√
d+ Θ−1

)
with storage of O

(
Θ ·max{

√
p−1
d ,
√
d}
)

,

where Θ denotes the proportion of distinguished points of Pollard’s kangaroo algo-
rithm.

The exponentiations in the total complexity of Theorem 3.1 can be converted to
multiplications [26]. Refer to [33] for an implementation of Cheon’s algorithm.
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In [12], Cheon found one more case in which the DLPwAI can be solved efficiently
by a similar algorithm. The previous algorithm works because the group F∗p has a small
subgroup of order p−1

d when d is a divisor of p− 1. By slightly modifying this idea, it
is possible to find α from g, gα, . . . , gα

2d
when d is a divisor of p+1 using a quadratic

extension of Fp. The details are omitted here, because it is more natural to consider
p+ 1 as a specific case of the generalized algorithms in the next section.

3.2 Generalized algorithms

The idea of Cheon’s algorithm is to embed an element in Fp to an element of an
extension field of Fp. More precisely, the discrete logarithm α ∈ Fp is embedded into
an element in Fp for the case Φ1(p) = p−1. Cheon’s algorithm is efficient when p−1
has a small divisor d with given parameters g, gα, . . . , gα

d
.

Satoh [34] extended Cheon’s algorithm to cases of Φk(p) for k ≥ 3 using the em-
bedding of Fp into GL(k,Fp). Recently, Kim et al. [24] realized that Satoh’s embed-
ding is essentially the same as the embedding of Fp into Fpk , and showed that, in most
cases, this generalization cannot be faster than the square-root complexity algorithms,
such as Pollard’s rho algorithm, when k ≥ 3.

Satoh’s generalization

The main idea of Cheon’s p + 1 algorithm is to construct an embedding of Fp into
its quadratic extension Fp[θ]. Satoh tried to generalize Cheon’s algorithm using an
embedding of Fp into a general linear group GL(k,Fp). This algorithm is introduced
only briefly here, since it is simplified and analyzed by Kim et al. in the next section.

Definition 3.2. For a given positive integer ν, we define the p-norm ‖ν‖p as the sum
of νi’s, where each νi is an integer satisfying 0 ≤ νi < p and ν =

∑
i≥0 νip

i.

For a divisor d of Φk(p) for some k ≥ 1, we put D := Φk(p)/d. Satoh’s algorithm
solves the DLP with inputs g, gα, . . . , gα

d
if it is possible to find an integer u satisfying

gcd(u, pk−1) = 1 and u(pk−1)/D ≡ ∆−δ (mod pk−1), where ∆ and δ are integers
with small p-norms. The total complexity is given in the following theorem.

Theorem 3.3 ([34]). Suppose that d is a divisor of Φk(p) for some k ≥ 1. More-
over, assume that an integer u satisfies gcd(u, pk − 1) = 1 and u(pk − 1)/D ≡
∆ − δ (mod pk − 1) for some integers ∆ and δ. Then, we can solve the DLPwAI in
Õ
(
k2(k log p+ w + k3 +

√
D)
)

time, where w = ‖∆‖p + ‖δ‖p.

This theorem is rather complicated to understand. Kim et al.’s generalization in the
next section covers all cases of Satoh’s algorithm, but uses simpler notation. Moreover,
they observed that the generalization of Cheon’s algorithm is not faster than the usual
DL-solving algorithm in most cases.
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Kim et al.’s generalization

Let D = Φk(p)/d and r be an integer. Kim et al. [24] considered an embedding

Fp → Fpk , α 7→ (α+ θ)r(p
k−1)/D

for an element θ ∈ F×
pk

that is not in a proper subfield, and they noticed that Satoh’s
embedding of Fp into the general linear groupGL(k,Fp) is essentially the same as the
above embedding. The element (α+ θ)r(p

k−1)/D is an element of the subgroup of Fpk
of order D, so the idea of Cheon’s algorithm can be applied.

Define E := (pk − 1)/D, and write rE in a signed p-ary representation as rE =∑
i eip

i, where |ei| < p/2. For an integer ν =
∑

i νip
i with the signed representation,

a signed sum of digits is Sp(ν) := max{S+
p (ν), S

−
p (ν)} = max{

∑
νi>0 νi,−

∑
νi<0 νi}.

Consider the following:

(α+ θ)rE =
(α+ θ)

∑
ei>0 eip

i

(α+ θ)
∑
ei<0 |ei|pi

=

∏
ei>0(α+ θp

i
)ei∏

ei<0(α+ θpi)|ei|
=
f1(α)θ1 + · · ·+ fk(α)θk
h1(α)θ1 + · · ·+ hk(α)θk

,

where {θ1, . . . , θk} is a basis of Fpk for θi = θi−1, deg fi ≤ S+
p (rE) and deghj ≤

S−p (rE). Since this element is in the subgroup of orderD, choose a generator ζ of this
group, and then apply the BSGS algorithm to find the integer k ∈ [0, D) satisfying
(α+ θ)rE = ζk.

The total complexity of this algorithm is about O
(√

D + Sp(rE)
)

. Hence, to
reduce the total complexity, it is necessary to find an integer r such that rE has a
low signed weight. However, by [24, Theorem 4.5], this complexity is worse than
the ordinary DL-solving algorithms unless all prime divisors of D are divisors of k or
p± 1.

When k = 2, the complexity of this algorithm is meaningful. When d is a divisor of
Φ2(p) = p+1, putD = (p+1)/d andE = (p−1)d. The signed weight ofE = dp−d
is equal to d, which is sufficiently small. This corresponds to the case r = 1 of the

above algorithm. Therefore, we can solve the DLPwAI inO
(√

p+1
d + d

)
exponenti-

ations with storageO
(

max{p+1
d ,
√
d}
)

when d is a divisor of p+1, and g, gα, . . . , gα
d

are given. Note that the total complexity O
(√

p+1
d + d

)
can be lowered to O(p1/3)

when d ≈ p1/3.

4 Polynomials with small value sets
In this section, we introduce an approach to solve the DLPwAI without using the
embedding technique. The idea, first proposed by Cheon and Kim [13, 14], is to
consider a function mapping by a polynomial over Fp.
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We briefly describe the idea: first, we compute two lists {gf(r1α), . . . , gf(rmα)} and
{gf(s1), . . . , gf(sm)} for given g, gα, . . . , gα

d
and random ri, sj ∈ Fp. If there exists

a collision between the two lists, say gf(riα) = gf(sj), then we solve the equation
f(riα) = f(sj) for the indeterminate α. Since the degree of f(x) is d, we obtain
at most d candidates for α, and so we can find a solution α in at most d searches.
Hence, the important parts of the algorithm are: (1) to obtain a polynomial such that
the expected number of m until a collision occurs is small; and (2) to compute the list
gf(r1α), . . . , gf(rmα) efficiently for the given g, gα, . . . , gα

d
.

This algorithm also gives a solution when p ± 1 has an appropriate divisor d, as in
Cheon’s algorithm.

4.1 Fast multipoint evaluation in a blackbox manner

Let f(x) be a polynomial over a field F of degree d. Then, we can compute f(r1), . . . , f(rm)
in O(max{m, d} log2 d) field operations using the fast mulitipoint evaluation method.
The fast multipoint evaluation method involves fast multiplication methods, fast Fourier
transformations, fast polynomial divisions, and so on. For more details on this, refer
to [40]. Even though the coefficients of f(x) are given in exponentiated form, we can
compute the multipoint evaluation efficiently. A precise description is as follows.

Proposition 4.1. If ga0 , . . . , gad are given for a polynomial f(x) = adx
d+ · · ·+a1x+

a0, then we can compute gf(r1), . . . , gf(rm) in O(m log2 d) group exponentiations for
m ≥ d.

The proof is easily obtained from the proof of the fast multipoint evaluation method
by replacing the field multiplications/additions with the group exponentiations/multiplications
in the proof. The following is a direct consequence of Proposition 4.1.

Corollary 4.2. For given g, gα, . . . , gα
d

and a polynomial f(x) ∈ Fp[x] of degree d,
we can compute gf(r1α), . . . , gf(rmα) in O(d + m log2 d) group exponentiations for
any elements r1, . . . , rm in Fp.

Proof. We can obtain ga0 , (gα)a1 , . . . , (gα
d
)ad in d exponentiations from g, gα, . . . , gα

d

and f(x). Now, let h(x) := f(xα) = adα
dxd + · · ·+ a1αx+ a0 and apply Proposi-

tion 4.1 to h(x).

4.2 An approach using polynomials of small value sets

In this section, we discuss the reduction of the DLPwAI into finding a polynomial with
a small value set.

Theorem 4.3 ([14]). Let g, gα, . . . , gα
d

be given, and let f(x) := f0 + f1x + · · · +
fdx

d be a polynomial over Fp of degree d. Define the value set of f(x) by V (f) :=
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{f(x) : x ∈ Fp} = {a1, . . . , at}, where t is the size of the value set. If the sizes of
the preimages |f−1(ai)| are almost uniform for 1 ≤ i ≤ t, then we can solve α in
O(m log2 d+ d log p) group operations, where m := Θ(

√
t).

Proof. First, we compute two lists {gf(riα) : i = 1, 2, . . . ,m} and {gf(sj) : j =
1, 2, . . . ,m} for randomly chosen ri and sj in time complexity O(d+m log2 d) using
the proposition in the previous section. Since the preimage of each ai has almost the
same size, f(riα) and f(sj) behave as random elements chosen from V (f), and the
two lists have a high probability of collision by the birthday paradox.

After a collision has occurred, solving the equation f(riα) = f(sj) with respect to
the indeterminate α gives the desired solution. We can find roots in Fp of a polynomial
of degree d over Fp using an expected number of Õ(d log p) operations. Since there
exist at most d solutions to this equation, we can find α inO(d) group exponentiations,
and compare these values with gα.

By virtue of Theorem 4.3, solving the DLPwAI is reduced to finding a polynomial
with a small value set. Finding such polynomials is a well-known research topic in the
field of number theory.

Consider the simple example f(x) = xd, where d|(p − 1). Then, the size of V (f)

is p−1
d +1, and by applying the above theorem, we solve the DLPwAI in Õ

(√
p−1
d

)
.

Note that any polynomial of form (x + b)d + c for b, c ∈ Fp has a value set of the
same size when d|(p − 1) [10]. Any polynomial of degree d has a value set of size at
least bp−1

d c+ 1. The above polynomials attain the lower bound, and they are the only
polynomials that attain this minimum [10].

However, it is not so easy to find a polynomial with a small value set: it is known that
the expected size of the value set over the polynomials of degree d is about pe , where e
is the Euler constant [39]. In [21], polynomials with a value set of size less than 2p/d
were classified for d < p1/4. A good reference on topics related to polynomials with
small value sets is [36].

Fortunately, although the value set of a given polynomial is not small, it is possible
to extend the idea in some cases. Consider the subset S ⊂ Fp and VS(f) := {f(x) :
x ∈ S}. Applying Theorem 4.3 for the set VS(f) instead of V (f), the same arguments
as in the proof hold when elements riα and sj are regarded as random elements over S.
Since the random element x ∈ Fp is in S with probability |S|/p, the total complexity

becomes O
(
p
|S| ·m

)
, where m =

√
|VS(f)|. For example, the Dickson polynomial

of degree d is a d-to-1 function on the set of size p/2 when d divides p+ 1 [16]. Thus,

we can compute the DLPwAI in O(2 ·
√

p
2d) group operations.

More generally, we can reduce the DLPwAI to find a polynomial whose substitution
polynomial f(x)− f(y) = 0 has many absolutely irreducible factors [25].
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5 Approach using the rational polynomials: Embedding to
elliptic curves

In this section, we describe a method proposed in [25] that uses an embedding from
the finite field into an elliptic curve group.

We assume that E(Fp) is cyclic in this section, and its order has a proper divisor d
(the size of d will be determined later). Let H be the subgroup of order δ in E(Fp),
where |E(Fp)| = d · δ.

Let α ∈ Fp be the discrete logarithm to be solved. There exists a point P in E(Fp)
whose x-coordinate is (rα) for some r ∈ Fp. Then, the x-coordinate of dP can be
computed using the d-th division polynomials φd(x) and ψ2

d(x) [37] with only the
x-coordinate of the base point:

x[dP ] =
φd(rα)

ψ2
d(rα)

,

where x[P ] denotes the x-coordinate of P ∈ E(Fp). Since dP lies in a subgroup H ,
we can find α by choosing P̃ from H such that P̃ = dP , and solving the equation
φd(rα)

ψ2
d(rα)

= x[P̃ ].

To find a proper P̃ , we proceed as follows: first, choose random points P̃1, P̃2, . . . , P̃m
uniformly from H , and compute a list

L1 := {gx[P̃i] : 1 ≤ i ≤ m, P̃i ∈ H}.

Independently, choose random r1, r2, . . . , rm uniformly from Fp, and compute a list

L2 := {gφd(rjα)/ψ2
d(rjα) : 1 ≤ j ≤ m, rj ∈ Fp}.

Since the order of H is δ, we can expect to find a collision between the lists in m =
O(
√
δ) by the birthday paradox.

However, the main obstacle in this algorithm is that computing list L2 seems hard,

although we can compute each gφd(rjα) and gψ
2
d(rjα) with g, gα, . . . , gα

d2

using Propo-
sition 4.1.

6 Generalized DLPwAI
The main topic of this section is a generalization of the DLPwAI, called the generalized
DLPwAI (GDLPwAI). The GDLPwAI aims to determine α for given gα

e1 , . . . , gα
ed ,

where e1, . . . , ed are arbitrary integers. The DLPwAI can be considered as the special
case of the GDLPwAI with ei = i.

In Section 4, a polynomial f of degree d ≈ p1/3 with a small value set was needed
to solve the DLPwAI. Unfortunately, such polynomials are extremely rare.
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Cheon, Kim, and Song [15] noticed that it is easy to find a polynomial with a small
value set when the degree is not so small. Unlike in the previous section, fast mul-
tipoint evaluation cannot be applied. Instead, they chose a polynomial f(x) so that
there exist elements ζi satisfying f(ζix) = ζif(x). Then, it is possible to evaluate
many points by a simple operation to multiply ζi. Moreover, they derived a heuristic
algorithm to solve the GDLPwAI efficiently when K = {e1, . . . , ed} is a multiplica-
tive subgroup of Z×p−1 using a K-group action on Z∗p. In this section, we assume K is
a multiplicative subgroup of Z×p−1.

6.1 Representation of a multiplicative subgroup of Z×
p−1

Before stating our theorem, we define a representation λ for a multiplicative subgroup
K of Z×p−1. We may regard K as part of some arithmetic sequences starting from 1,
and want to take λ to be the largest of the intervals of such sequences.

Let π : Z → Zp−1 be the canonical projection. For a multiplicative subgroup K
of Z×p−1, let IK be the ideal of Zp−1 generated by {k − 1 ∈ Zp−1 : k ∈ K}. Then,
π−1(IK) is an ideal of Z, and we define λ as a unique nonnegative generator of this
ideal. We often simply write λ = gcd(K − 1), since λ is the greatest common divisor
of K − 1 := {k − 1 ∈ Z : k ∈ K}, where each element of K − 1 is considered as an
integer in the set {1, 2, . . . , p− 1}.

Note that λ is an even divisor of p− 1, since p− 1 ∈ K − 1, and elements of S are
even. Moreover, every element of K is of the form 1 + λm for some m ∈ Zp−1. We
also define Kλ = (1 + λZp−1) ∩ Z×p−1 to be the set of unit elements k of Zp−1 such
that k − 1 is a multiple of λ. It is easy to check that Kλ is closed under multiplication
and the inverse function, and is therefore a multiplicative subgroup of Z×p−1. Note that
K is a subgroup of Kλ, and the index κ = [Kλ : K] is a positive integer.

6.2 A group action on Z∗
p and polynomial construction

Define a group action K × Z∗p → Z∗p by (k, x) 7→ xk. The orbit generated by x is the

set {xk : k ∈ K}, denoted by xK . For a primitive element ξ of Zp, and ζ = ξ
p−1
λ , the

set of fixed points of this group action is

(Z∗p)K = {x ∈ Z∗p : xk = x for all k ∈ K} = {x ∈ Z∗p : xλ = 1} = 〈ζ〉,

where λ = gcd(K − 1) is the representation of K defined above, and 〈ζ〉 denotes
the cyclic subgroup generated by ζ. Now, we define a polynomial f = fK on Zp by
f(x) =

∑
k∈K x

k. If x and y are contained in the same orbit, then y = xk for some
k ∈ K and f(y) = f(x). Moreover, f(ζix) = ζif(x) is satisfied for all 0 ≤ i < λ.
Therefore, f has the same value in the same orbit, and we can calculate the value of
f(ζix) efficiently from f(x). These properties will be used in the following theorem.
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6.3 Main result

Combining the results above, we obtain the following theorem. It is assumed that
the computational cost for the multiplications in G is a constant times the cost of the
multiplications in Zp.

Theorem 6.1. Let K be a multiplicative subgroup of Z×p−1, λ = gcd(K − 1) be its
representation, and κ = [Kλ : K] be the index defined above. Then, we can solve
for α inO

(
p

λ|K|(
√
λ+ |K|)

)
exponentiations in Zp for given

{(
k, gα

k
)

: k ∈ K
}

if

|αK | = |K| and f(α) 6= 0.

Proof. First, calculate gf(α) =
∏
k∈K g

αk . Three elements β ∈ Z∗p, t ∈ [0, λ), and
k ∈ K satisfying αk = ζtβ will be determined in the next step. Take a random β
from Z∗p, and try to find t ∈ [0, λ) satisfying αK = ζtβK . Since |αK | = |K|, there are
λ|K| distinct elements of the form ζiαk in Z∗p, so we can find such a β with probability
λ|K|
p−1 . To find t ∈ [0, λ), calculate f(β) in O(|K|) exponentiations, and use the BSGS

algorithm with the relations αK = ζtβK and gf(α) = gζ
tf(β). This can be done

in O(
√
λ) exponentiations. After finding t, the exponent k can be obtained in a short

time by comparing elements from the equations αk = ζtβ and gα
k
= gζ

tβ . The
total complexity of this algorithm is O

(
p

λ|K|(
√
λ+ |K|)

)
exponentiations, since the

expected number of repetitions is p−1
λ|K| .

The complexity of the algorithm is a function of λ and |K|, but these are not inde-
pendent parameters. The following lemma computes |Kλ| exactly, and helps convert
the total complexity to a simple form.

Lemma 6.2. Let λ be a divisor of p− 1. Then, |Kλ| = p−1
λ ·

∏
q∈Q

(
1− 1

q

)
, where Q

is the set of prime divisors of p− 1 that do not divide λ.

The product
∏
q∈Q

(
1− 1

q

)
is not particularly small, so it may be assumed that Kλ

is a constant multiple of p/λ. From this lemma, the total complexity can be expressed
as a function of λ and κ.

Corollary 6.3. Under the same conditions as Theorem 6.1, we can solve the GDLPwAI
in O

((
κ
√
λ+ p

λ

)
log p

)
multiplications in Zp.

Note that the complexity can be lowered to O
(
p1/3

)
when λ ≈ p2/3 and κ is a

constant.

Two conditions |αK | = |K| and f(α) 6= 0 are required to run the algorithm. The
following lemma implies that the first condition is satisfied with a high probability.
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Lemma 6.4. If gcd(λ, p−1
λ ) = 1, then |xK | = |K| for x satisfying ordp(xλ) = p−1

λ .
Moreover, there are exactly λφ(p−1

λ ) elements x in Z∗p such that ordp(xλ) = p−1
λ .

The second condition is not restrictive, but it is interesting to extend the algorithm
to include this case.

7 Applications and implications

7.1 Strong Diffie–Hellman Problem and Its Variants

Many cryptosystems are designed such that their security is based on variants of the
Diffie–Hellman (DH) problem. These variants are seemingly weaker than the DLP or
the DH problem. However, they are widely used to construct cryptosystems, as they
provide more functionality. In this section, we review these variants of the DH prob-
lem. These problems are directly solved when the DLPwAI is solved.

The `-Weak Diffie–Hellman Problem aims to compute g1/α ∈ G for given (g, gα, . . . , gα
`
) ∈

G`+1. The problem was introduced by Mitsunari, Sakai, and Kasahara [30].

Many other similar problems have been suggested in the bilinear setting. We con-
sider an efficiently computable bilinear map e : G × G → GT for a cyclic group GT
of prime order p.

The `-Strong Diffie–Hellman Problem attempts to find (c, g1/(α+c)) for any chosen
c ∈ Zp\{−α} from (g, gα, . . . , gα

`
) ∈ G`+1. The problem was introduced by Boneh

and Boyen to construct short signatures without random oracles [4], and was later used
to construct short group signatures [7].

The `-Bilinear Diffie–Hellman Inversion Problem focuses on finding e(g, g)1/α for
given (g, gα, . . . , gα

`
) ∈ G`+1. Boneh and Boyen constructed a selectively secure ID-

based encryption without a random oracle model, the security of which was based on
this problem [3].

The `-Bilinear Diffie–Hellman Exponent Problem is the problem of computing e(g, g)α
`

for given (g, gα, . . . , gα
`−1
, gα

`+1
, . . . , gα

2`
) ∈ G2`. It was first used for a hierarchical

identity–based encryption with constant-size ciphertext [6], and was later employed
for a public key broadcast encryption with short ciphertexts and private keys [8].

More generally, most of these problems can be translated to a setting with an asym-
metric bilinear map e : G1 ×G2 → GT [5].
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7.2 Attack on the existing schemes using Cheon’s algorithm

Blind signatures on the gap Diffie–Hellman group

A gap Diffie–Hellman (GDH) group is one in which the computational DH problem
is hard, but the decisional DH problem is easy. Boldyreva proposed a blind signature
scheme on the GDH group [2]. This scheme can be forged under the chosen mes-
sage attack when the DLPwAI can be easily solved [12]: first, we briefly describe the
scheme in [2]. Let α ∈ Zp be a secret key, and h := gα be a corresponding public key.
To blindly sign a message m, we randomly choose r ∈ Zp and send m′ = H(m) · gr
to a signer, where H is a hash function from the message space to the group G. The
signer computes σ′ = (m′)α, and returns it to the sender. Then, the signature is ob-
tained by computing σ′/hr = H(m)α.

We can obtain the instance of the DLPwAI from the signature queries for the chosen
message. Note that the signer has no information on the message to be signed. First,
the attacker requests a signature on the message h·gr1 for a random r1 ∈ Zp. Then, the
signer returns (h·gr1)α, from which the attacker can obtain hα = (h·gr1)α/hr1 = gα

2
.

Recursively, the attacker can obtain hα
i
= gα

i+1
by requesting a signature on the

message (hα
i−1 · gri) for random ri’s.

Forgery of the Boneh–Boyen signature

Consider a bilinear map e : G × G → GT , where G and GT are cyclic groups of
prime order p, and g ∈ G is a generator of G. Boneh and Boyen constructed a short
signature scheme [4] with the bilinear map.

The public key of the Boneh–Boyen signature scheme is a pair (g, h = gα) for a
generator g of G, where the secret key is α ∈ Z∗p. The signature corresponding to the
message m ∈ Zp is given by σ = g1/(α−m). The verification follows from the relation
e(σ, h · g−m) = e(g, g).

Jao and Yoshida [22] noticed that the secret key α is recoverable from d signature
queries using Cheon’s algorithm. The idea uses the partial fraction decomposition
theorem:

A(x)

(x−m1) · · · (x−md)
= B(x) +

e1

x−m1
+ · · · ed

x−md
,

where m1, . . . ,md ∈ Zp and A(x) and B(x) are polynomials in Zp[x]. In particular,
we can compute B(x) and e1, . . . , ed for given m1, . . . ,md and A(x).

The attack on the Boneh–Boyen signature can be described as follows. An attacker
queries d signatures on the messages m1, . . . ,md, and obtains the corresponding sig-
natures σi = g1/(α−mi) for 1 ≤ i ≤ d.

Let g1 := g1/(α−m1)···(α−md). Using the partial decomposition theorem, the attacker
computes constants e1, . . . , ed satisfying 1

(x−m1)···(x−md) = e1
x−m1

+ · · · ed
x−md . Thus,

the attacker can compute the value of g1 from the signatures σi = g1/(α−mi) and the
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constants ei. Repeatedly, the attacker obtains values of gα
i

1 = g
αi

(α−m1)···(α−md) using
the partial decomposition theorem with A(x) = xi.

The complexity of computing the parameters g1, g
α
1 , . . . , g

αd

1 (or g1, g
α
1 , . . . , g

α2d

1 ) is
at most O(d2) exponentiations. Combining this consequence with Cheon’s algorithm,

the attacker can recover the secret key α in time O
(√

p
d + d2

)
when p ± 1 has an

appropriate divisor d.

8 Open problems and further work
In this article, several approaches to solving the DLPwAI have been described. One of
the main goals of this research is to solve the problem when Φk(p) has an appropriate
divisor d for k ≥ 3. Currently, the best-known algorithm, Cheon’s algorithm, only
solves the problem when p ± 1 has a small divisor d. With the approaches described
in Section 4, the DLPwAI can be solved when we can find a polynomial of degree
d < p1/3 that has a value set of size < cp

d for some fixed constant c, but the existence
of such a polynomial has not yet been proved.

On the other hand, in the argument of Theorem 4.3 on the collision probability
caused by the function mapping, we assumed that the distributions of the values were
uniform. It is, therefore, possible to consider extending the argument to the case of
non-uniform distributions. This might give rise to the problem of finding a polynomial
whose substitution polynomial has lots of absolutely irreducible factors. For the non-
uniform birthday problem for a constant d, we refer to [18]. However, for the DLPwAI,
the argument should hold for d < p1/3. This extension remains an open problem.

The approach described in Section 5 settles the problem whereby, given ai ∈ Zp
for 1 ≤ i ≤ m and (gbj , gcj ) for 1 ≤ j ≤ m, we wish to efficiently find a collision
between gai and gbj/cj .

If we have an algorithm for multipoint evaluation on a d-sparse polynomial (only
d-coefficients are non-zero) that runs in linear time in the number of evaluated points,
then the algorithm described in Section 6 can be improved. Further, any d-sparse
polynomial with a small value set can be used to solve the GDLPwAI in more general
instances, provided that the efficient algorithm for multipoint evaluation exists. Note
that the algorithm proposed by Cheon, Kim, and Song requires these instances to have
a special structure: the algorithm runs for the inputs gα

ei , where each ei is an element
from a certain multiplicative group.

Independently, we may generalize the problem further: let fi(x) be any polynomial
over Zp for 1 ≤ i ≤ d. Is there any efficient algorithm to find α for a given gfi(α), and
what would be the lower bound for these problems in the generic group model [35]?
Is it possible to reduce the DLPwAI to these generalized problems?

Currently, Cheon’s p ± 1 algorithm attains the lower bound in the generic group
model. From the results in the current state, however, it is hard to predict the security
of the problem for other cases: does an algorithm exist that can attain the lower bound
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of complexity, and, if not, how far can we reduce the complexity of the problem?
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